학술논문

A Robust Method for Pulse Peak Determination in a Digital Volume Pulse Waveform With a Wandering Baseline
Document Type
Periodical
Source
IEEE Transactions on Biomedical Circuits and Systems IEEE Trans. Biomed. Circuits Syst. Biomedical Circuits and Systems, IEEE Transactions on. 8(5):729-737 Oct, 2014
Subject
Bioengineering
Components, Circuits, Devices and Systems
Interpolation
Noise
Wavelet transforms
Robustness
Morphology
Splines (mathematics)
Heart rate
Baseline wander
digital volume pulse
morphological filter
peak determination
slope sum function
Language
ISSN
1932-4545
1940-9990
Abstract
This paper presents a robust method for pulse peak determination in a digital volume pulse (DVP) waveform with a wandering baseline. A proposed new method uses a modified morphological filter (MMF) to eliminate a wandering baseline signal of the DVP signal with minimum distortion and a slope sum function (SSF) with an adaptive thresholding scheme to detect pulse peaks from the baseline-removed DVP signal. Further in order to cope with over-detected and missed pulse peaks, knowledge based rules are applied as a postprocessor. The algorithm automatically adjusts detection parameters periodically to adapt to varying beat morphologies and fluctuations. Compared with conventional methods (highpass filtering, linear interpolation, cubic spline interpolation, and wavelet adaptive filtering), our method performs better in terms of the signal-to-error ratio, the computational burden (0.125 seconds for one minute of DVP signal analysis with the Intel Core 2 Quad processor @ 2.40 GHz PC), the true detection rate (97.32% with an acceptance level of 4 ms ) as well as the normalized error rate (0.18%). In addition, the proposed method can detect true positions of pulse peaks more accurately and becomes very useful for pulse transit time (PTT) and pulse rate variability (PRV) analyses.