학술논문

Amplitude analysis and branching-fraction measurement of D s + $$ {\mathrm{D}}_{\mathrm{s}}^{+} $$ → π + π 0 η′
Document Type
article
Author
The BESIII collaborationM. AblikimM. N. AchasovP. AdlarsonS. AhmedM. AlbrechtR. AlibertiA. AmorosoM. R. AnQ. AnX. H. BaiY. BaiO. BakinaR. B. FerroliI. BalossinoY. BanK. BegzsurenN. BergerM. BertaniD. BettoniF. BianchiJ. BlomsA. BortoneI. BoykoR. A. BriereH. CaiX. CaiA. CalcaterraG. F. CaoN. CaoS. A. CetinJ. F. ChangW. L. ChangG. ChelkovD. Y. ChenG. ChenH. S. ChenM. L. ChenS. J. ChenX. R. ChenY. B. ChenZ. J. ChenW. S. ChengG. CibinettoF. CossioX. F. CuiH. L. DaiX. C. DaiA. DbeyssiR. E. de BoerD. DedovichZ. Y. DengA. DenigI. DenysenkoM. DestefanisF. De MoriY. DingC. DongJ. DongL. Y. DongM. Y. DongX. DongS. X. DuY. L. FanJ. FangS. S. FangY. FangR. FarinelliL. FavaF. FeldbauerG. FeliciC. Q. FengJ. H. FengM. FritschC. D. FuY. GaoY. G. GaoI. GarziaP. T. GeC. GengE. M. GersabeckA. GilmanK. GoetzenL. GongW. X. GongW. GradlM. GrecoL. M. GuM. H. GuS. GuY. T. GuC. Y. GuanA. Q. GuoL. B. GuoR. P. GuoY. P. GuoA. GuskovT. T. HanW. Y. HanX. Q. HaoF. A. HarrisK. L. HeF. H. HeinsiusC. H. HeinzT. HeldY. K. HengC. HeroldM. HimmelreichT. HoltmannG. Y. HouY. R. HouZ. L. HouH. M. HuJ. F. HuT. HuY. HuG. S. HuangL. Q. HuangX. T. HuangY. P. HuangZ. HuangT. HussainN. HüskenW. I. AnderssonW. ImoehlM. IrshadS. JaegerS. JanchivQ. JiQ. P. JiX. B. JiX. L. JiY. Y. JiH. B. JiangX. S. JiangJ. B. JiaoZ. JiaoS. JinY. JinM. Q. JingT. JohanssonN. Kalantar-NayestanakiX. S. KangR. KappertM. KavatsyukB. C. KeI. K. KeshkA. KhoukazP. KieseR. KiuchiR. KliemtL. KochO. B. KolcuB. KopfM. KuemmelM. KuessnerA. KupscM. G. KurthW. KühnJ. J. LaneJ. S. LangeP. LarinA. LavaniaL. LavezziZ. H. LeiH. LeithoffM. LellmannT. LenzC. LiC. H. LiD. M. LiF. LiG. LiH. LiH. B. LiH. J. LiJ. L. LiJ. Q. LiJ. S. LiK. LiL. K. LiL. LiP. R. LiS. Y. LiW. D. LiW. G. LiX. H. LiX. L. LiX. LiZ. Y. LiH. LiangY. F. LiangY. T. LiangG. R. LiaoL. Z. LiaoJ. LibbyC. X. LinB. J. LiuC. X. LiuD. LiuF. H. LiuF. LiuH. B. LiuH. M. LiuH. LiuJ. B. LiuJ. L. LiuJ. Y. LiuK. LiuK. Y. LiuL. LiuM. H. LiuP. L. LiuQ. LiuS. B. LiuS. LiuT. LiuW. M. LiuX. LiuY. LiuY. B. LiuZ. A. LiuZ. Q. LiuX. C. LouF. X. LuH. J. LuJ. D. LuJ. G. LuX. L. LuY. LuY. P. LuC. L. LuoM. X. LuoP. W. LuoT. LuoX. L. LuoX. R. LyuF. C. MaH. L. MaL. L. MaM. M. MaQ. M. MaR. Q. MaR. T. MaX. X. MaX. Y. MaF. E. MaasM. MaggioraS. MaldanerS. MaldeQ. A. MalikA. MangoniY. J. MaoZ. P. MaoS. MarcelloZ. X. MengJ. G. MesschendorpG. MezzadriT. J. MinR. E. MitchellX. H. MoY. J. MoN. Y. MuchnoiH. MuramatsuS. NakhoulY. NefedovF. NerlingI. B. NikolaevZ. NingS. NisarS. L. OlsenQ. OuyangS. PacettiX. PanY. PanA. PathakP. PatteriM. PelizaeusH. P. PengK. PetersJ. PetterssonJ. L. PingR. G. PingR. PolingV. PrasadH. QiH. R. QiK. H. QiM. QiT. Y. QiS. QianW. B. QianZ. QianC. F. QiaoL. Q. QinX. P. QinX. S. QinZ. H. QinJ. F. QiuS. Q. QuK. H. RashidK. RavindranC. F. RedmerA. RivettiV. RodinM. RoloG. RongC. RosnerM. RumpH. S. SangA. SarantsevY. SchelhaasC. SchnierK. SchoenningM. ScodeggioD. C. ShanW. ShanX. Y. ShanJ. F. ShangguanM. ShaoC. P. ShenH. F. ShenP. X. ShenX. Y. ShenH. C. ShiR. S. ShiX. ShiX. D. ShiJ. J. SongW. M. SongY. X. SongS. SosioS. SpataroK. X. SuP. P. SuF. F. SuiG. X. SunH. K. SunJ. F. SunL. SunS. S. SunT. SunW. Y. SunX. SunY. J. SunY. K. SunY. Z. SunZ. T. SunY. H. TanY. X. TanC. J. TangG. Y. TangJ. TangJ. X. TengV. ThorenW. H. TianY. T. TianI. UmanB. WangC. W. WangD. Y. WangH. J. WangH. P. WangK. WangL. L. WangM. WangM. Z. WangW. WangW. H. WangW. P. WangX. WangX. F. WangX. L. WangY. WangY. D. WangY. F. WangY. Q. WangY. Y. WangZ. WangZ. Y. WangD. H. WeiF. WeidnerS. P. WenD. J. WhiteU. WiednerG. WilkinsonM. WolkeL. WollenbergJ. F. WuL. H. WuL. J. WuX. WuZ. WuL. XiaH. XiaoS. Y. XiaoZ. J. XiaoX. H. XieY. G. XieY. H. XieT. Y. XingG. F. XuQ. J. XuW. XuX. P. XuY. C. XuF. YanL. YanW. B. YanW. C. YanX. YanH. J. YangH. X. YangL. YangS. L. YangY. X. YangY. YangZ. YangM. YeM. H. YeJ. H. YinZ. Y. YouB. X. YuC. X. YuG. YuJ. S. YuT. YuC. Z. YuanL. YuanX. Q. YuanY. YuanZ. Y. YuanC. X. YueA. A. ZafarX. Z. ZengY. ZengA. Q. ZhangB. X. ZhangG. ZhangH. ZhangH. H. ZhangH. Y. ZhangJ. J. ZhangJ. L. ZhangJ. Q. ZhangJ. W. ZhangJ. Y. ZhangJ. Z. ZhangJ. ZhangL. M. ZhangL. Q. ZhangL. ZhangS. ZhangS. F. ZhangX. D. ZhangX. Y. ZhangY. ZhangY. T. ZhangY. H. ZhangZ. H. ZhangZ. Y. ZhangG. ZhaoJ. ZhaoJ. Y. ZhaoJ. Z. ZhaoL. ZhaoM. G. ZhaoQ. ZhaoS. J. ZhaoY. B. ZhaoY. X. ZhaoZ. G. ZhaoA. ZhemchugovB. ZhengJ. P. ZhengY. ZhengY. H. ZhengB. ZhongC. ZhongL. P. ZhouQ. ZhouX. ZhouX. K. ZhouX. R. ZhouX. Y. ZhouA. N. ZhuJ. ZhuK. ZhuK. J. ZhuS. H. ZhuT. J. ZhuW. J. ZhuX. Y. ZhuY. C. ZhuZ. A. ZhuB. S. ZouJ. H. Zou
Source
Journal of High Energy Physics, Vol 2022, Iss 4, Pp 1-26 (2022)
Subject
Branching fraction
Charm Physics
e +-e − Experiments
Particle and Resonance Production
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1029-8479
Abstract
Abstract Using data collected with the BESIII detector in e + e − collisions at center-of-mass energies between 4.178 and 4.226 GeV and corresponding to 6.32 fb −1 of integrated luminosity, we report the amplitude analysis and branching-fraction measurement of the D s + $$ {D}_s^{+} $$ → π + π 0 η′ decay. We find that the dominant intermediate process is D s + $$ {D}_s^{+} $$ → ρ + η′ and the significances of other resonant and nonresonant processes are all less than 3σ. The upper limits on the branching fractions of S-wave and P-wave nonresonant components are set to 0.10% and 0.74% at the 90% confidence level, respectively. In addition, the branching fraction of the D s + $$ {D}_s^{+} $$ → π + π 0 η′ decay is measured to be (6.15 ± 0.25(stat.) ± 0.18(syst.))%, which receives significant contribution only from D s + $$ {D}_s^{+} $$ → ρ + η′ according to the amplitude analysis.