학술논문

Studies of the decay D s + → K + K − μ + ν μ $$ {\textrm{D}}_{\textrm{s}}^{+}\to {\textrm{K}}^{+}{\textrm{K}}^{-}{\mu}^{+}{\nu}_{\mu } $$
Document Type
article
Author
The BESIII collaborationM. AblikimM. N. AchasovP. AdlarsonX. C. AiR. AlibertiA. AmorosoM. R. AnQ. AnY. BaiO. BakinaI. BalossinoY. BanV. BatozskayaK. BegzsurenN. BergerM. BerlowskiM. BertaniD. BettoniF. BianchiE. BiancoJ. BlomsA. BortoneI. BoykoR. A. BriereA. BrueggemannH. CaiX. CaiA. CalcaterraG. F. CaoN. CaoS. A. CetinJ. F. ChangT. T. ChangW. L. ChangG. R. CheG. ChelkovC. ChenChao ChenG. ChenH. S. ChenM. L. ChenS. J. ChenS. M. ChenT. ChenX. R. ChenX. T. ChenY. B. ChenY. Q. ChenZ. J. ChenW. S. ChengS. K. ChoiX. ChuG. CibinettoS. C. CoenF. CossioJ. J. CuiH. L. DaiJ. P. DaiA. DbeyssiR. E. de BoerD. DedovichZ. Y. DengA. DenigI. DenysenkoM. DestefanisF. De MoriB. DingX. X. DingY. DingJ. DongL. Y. DongM. Y. DongX. DongS. X. DuZ. H. DuanP. EgorovY. L. FanJ. FangS. S. FangW. X. FangY. FangR. FarinelliL. FavaF. FeldbauerG. FeliciC. Q. FengJ. H. FengK. FischerM. FritschC. FritzschC. D. FuJ. L. FuY. W. FuH. GaoY. N. GaoYang GaoS. GarbolinoI. GarziaP. T. GeZ. W. GeC. GengE. M. GersabeckA. GilmanK. GoetzenL. GongW. X. GongW. GradlS. GramignaM. GrecoM. H. GuY. T. GuC. Y. GuanZ. L. GuanA. Q. GuoL. B. GuoM. J. GuoR. P. GuoY. P. GuoA. GuskovT. T. HanW. Y. HanX. Q. HaoF. A. HarrisK. K. HeK. L. HeF. H. H. HeinsiusC. H. HeinzY. K. HengC. HeroldT. HoltmannP. C. HongG. Y. HouX. T. HouY. R. HouZ. L. HouH. M. HuJ. F. HuT. HuY. HuG. S. HuangK. X. HuangL. Q. HuangX. T. HuangY. P. HuangT. HussainN. HüskenW. ImoehlM. IrshadJ. JacksonS. JaegerS. JanchivJ. H. JeongQ. JiQ. P. JiX. B. JiX. L. JiY. Y. JiX. Q. JiaZ. K. JiaP. C. JiangS. S. JiangT. J. JiangX. S. JiangY. JiangJ. B. JiaoZ. JiaoS. JinY. JinM. Q. JingT. JohanssonX. KuiS. KabanaN. Kalantar-NayestanakiX. L. KangX. S. KangR. KappertM. KavatsyukB. C. KeA. KhoukazR. KiuchiR. KliemtO. B. KolcuB. KopfM. K. KuessnerA. KupscW. KühnJ. J. LaneP. LarinA. LavaniaL. LavezziT. T. LeiZ. H. LeiH. LeithoffM. LellmannT. LenzC. LiC. H. LiCheng LiD. M. LiF. LiG. LiH. LiH. B. LiH. J. LiH. N. LiHui LiJ. R. LiJ. S. LiJ. W. LiK. L. LiKe LiL. J. LiL. K. LiLei LiM. H. LiP. R. LiQ. X. LiS. X. LiT. LiW. D. LiW. G. LiX. H. LiX. L. LiXiaoyu LiY. G. LiZ. J. LiZ. X. LiC. LiangH. LiangY. F. LiangY. T. LiangG. R. LiaoL. Z. LiaoJ. LibbyA. LimphiratD. X. LinT. LinB. J. LiuB. X. LiuC. LiuC. X. LiuF. H. LiuFang LiuFeng LiuG. M. LiuH. LiuH. B. LiuH. M. LiuHuanhuan LiuHuihui LiuJ. B. LiuJ. L. LiuJ. Y. LiuK. LiuK. Y. LiuKe LiuL. LiuL. C. LiuLu LiuM. H. LiuP. L. LiuQ. LiuS. B. LiuT. LiuW. K. LiuW. M. LiuX. LiuY. LiuY. B. LiuZ. A. LiuZ. Q. LiuX. C. LouF. X. LuH. J. LuJ. G. LuX. L. LuY. LuY. P. LuZ. H. LuC. L. LuoM. X. LuoT. LuoX. L. LuoX. R. LyuY. F. LyuF. C. MaH. L. MaJ. L. MaL. L. MaM. M. MaQ. M. MaR. Q. MaR. T. MaX. Y. MaY. MaY. M. MaF. E. MaasM. MaggioraS. MaldeA. MangoniY. J. MaoZ. P. MaoS. MarcelloZ. X. MengJ. G. MesschendorpG. MezzadriH. MiaoT. J. MinR. E. MitchellX. H. MoN. Yu. MuchnoiY. NefedovF. NerlingI. B. NikolaevZ. NingS. NisarY. NiuS. L. OlsenQ. OuyangS. PacettiX. PanY. PanA. PathakP. PatteriY. P. PeiM. PelizaeusH. P. PengK. PetersJ. L. PingR. G. PingS. PluraS. PogodinV. PrasadF. Z. QiH. QiH. R. QiM. QiT. Y. QiS. QianW. B. QianC. F. QiaoJ. J. QinL. Q. QinX. P. QinX. S. QinZ. H. QinJ. F. QiuS. Q. QuC. F. RedmerK. J. RenA. RivettiV. RodinM. RoloG. RongCh. RosnerS. N. RuanN. SaloneA. SarantsevY. SchelhaasK. SchoenningM. ScodeggioK. Y. ShanW. ShanX. Y. ShanJ. F. ShangguanL. G. ShaoM. ShaoC. P. ShenH. F. ShenW. H. ShenX. Y. ShenB. A. ShiH. C. ShiJ. L. ShiJ. Y. ShiQ. Q. ShiR. S. ShiX. ShiJ. J. SongT. Z. SongW. M. SongY. J. SongY. X. SongS. SosioS. SpataroF. StielerY. J. SuG. B. SunG. X. SunH. SunH. K. SunJ. F. SunK. SunL. SunS. S. SunT. SunW. Y. SunY. SunY. J. SunY. Z. SunZ. T. SunY. X. TanC. J. TangG. Y. TangJ. TangY. A. TangL. Y. TaoQ. T. TaoM. TatJ. X. TengV. ThorenW. H. TianY. TianZ. F. TianI. UmanS. J. WangB. WangB. L. WangBo WangC. W. WangD. Y. WangF. WangH. J. WangH. P. WangJ. P. WangK. WangL. L. WangM. WangMeng WangS. WangT. WangT. J. WangW. WangW. P. WangX. WangX. F. WangX. J. WangX. L. WangY. WangY. D. WangY. F. WangY. H. WangY. N. WangY. Q. WangYaqian WangYi WangZ. WangZ. L. WangZ. Y. WangZiyi WangD. WeiD. H. WeiF. WeidnerS. P. WenC. W. WenzelU. W. WiednerG. WilkinsonM. WolkeL. WollenbergC. WuJ. F. WuL. H. WuL. J. WuX. WuX. H. WuY. WuY. J. WuZ. WuL. XiaX. M. XianT. XiangD. XiaoG. Y. XiaoH. XiaoS. Y. XiaoY. L. XiaoZ. J. XiaoC. XieX. H. XieY. XieY. G. XieY. H. XieZ. P. XieT. Y. XingC. F. XuC. J. XuG. F. XuH. Y. XuQ. J. XuQ. N. XuW. XuW. L. XuX. P. XuY. C. XuZ. P. XuZ. S. XuF. YanL. YanW. B. YanW. C. YanX. Q. YanH. J. YangH. L. YangH. X. YangTao YangY. YangY. F. YangY. X. YangYifan YangZ. W. YangZ. P. YaoM. YeM. H. YeJ. H. YinZ. Y. YouB. X. YuC. X. YuG. YuJ. S. YuT. YuX. D. YuC. Z. YuanL. YuanS. C. YuanX. Q. YuanY. YuanZ. Y. YuanC. X. YueA. A. ZafarF. R. ZengX. ZengY. ZengY. J. ZengX. Y. ZhaiY. C. ZhaiY. H. ZhanA. Q. ZhangB. L. ZhangB. X. ZhangD. H. ZhangG. Y. ZhangH. ZhangH. H. ZhangH. Q. ZhangH. Y. ZhangJ. J. ZhangJ. L. ZhangJ. Q. ZhangJ. W. ZhangJ. X. ZhangJ. Y. ZhangJ. Z. ZhangJianyu ZhangJiawei ZhangL. M. ZhangL. Q. ZhangLei ZhangP. ZhangQ. Y. ZhangShuihan ZhangShulei ZhangX. D. ZhangX. M. ZhangX. Y. ZhangY. ZhangY. T. ZhangY. H. ZhangYan ZhangYao ZhangZ. H. ZhangZ. L. ZhangZ. Y. ZhangG. ZhaoJ. ZhaoJ. Y. ZhaoJ. Z. ZhaoLei ZhaoLing ZhaoM. G. ZhaoS. J. ZhaoY. B. ZhaoY. X. ZhaoZ. G. ZhaoA. ZhemchugovB. ZhengJ. P. ZhengW. J. ZhengY. H. ZhengB. ZhongX. ZhongH. ZhouL. P. ZhouX. ZhouX. K. ZhouX. R. ZhouX. Y. ZhouY. Z. ZhouJ. ZhuK. ZhuK. J. ZhuL. ZhuL. X. ZhuS. H. ZhuS. Q. ZhuT. J. ZhuW. J. ZhuY. C. ZhuZ. A. ZhuJ. H. ZouJ. Zu
Source
Journal of High Energy Physics, Vol 2023, Iss 12, Pp 1-27 (2023)
Subject
Branching fraction
Charm Physics
e +-e − Experiments
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1029-8479
Abstract
Abstract The D s + → K + K − μ + ν μ $$ {D}_s^{+}\to {K}^{+}{K}^{-}{\mu}^{+}{\nu}_{\mu } $$ decay is studied based on 7.33 fb −1 of e + e − collision data collected with the BESIII detector at center-of-mass energies in the range from 4.128 to 4.226 GeV. The absolute branching fraction is measured as B D s + → ϕ μ + ν μ = 2.25 ± 0.09 ± 0.07 × 10 − 2 $$ \mathcal{B}\left({D}_s^{+}\to \phi {\mu}^{+}{\nu}_{\mu}\right)=\left(2.25\pm 0.09\pm 0.07\right)\times {10}^{-2} $$ , the most precise measurement to date. Combining with the world average of B D s + → ϕ e + ν e $$ \mathcal{B}\left({D}_s^{+}\to \phi {e}^{+}{\nu}_e\right) $$ , the ratio of the branching fractions obtained is B D s + → ϕ μ + ν μ B D s + → ϕ e + ν e = 0.94 ± 0.08 $$ \frac{\mathcal{B}\left({D}_s^{+}\to \phi {\mu}^{+}{\nu}_{\mu}\right)}{\mathcal{B}\left({D}_s^{+}\to \phi {e}^{+}{\nu}_e\right)}=0.94\pm 0.08 $$ , in agreement with lepton universality. By performing a partial wave analysis, the hadronic form factor ratios at q 2 = 0 are extracted, finding r V = V 0 A 1 0 = 1.58 ± 0.17 ± 0.02 $$ {r}_V=\frac{V(0)}{A_1(0)}=1.58\pm 0.17\pm 0.02 $$ and r 2 = A 2 0 A 1 0 = 0.71 ± 0.14 ± 0.02 $$ {r}_2=\frac{A_2(0)}{A_1(0)}=0.71\pm 0.14\pm 0.02 $$ , where the first uncertainties are statistical and the second are systematic. No significant S-wave contribution from f 0(980) → K + K − is found. The upper limit B D s + → f 0 980 μ + ν μ ⋅ B f 0 980 → K + K − < 5.45 × 10 − 4 $$ \mathcal{B}\left({D}_s^{+}\to {f}_0(980){\mu}^{+}{\nu}_{\mu}\right)\cdot \mathcal{B}\left({f}_0(980)\to {K}^{+}{K}^{-}\right)