학술논문

Measurement of Λ transverse polarization in e + e − collisions at s $$ \sqrt{s} $$ = 3.68 − 3.71 GeV
Document Type
article
Author
The BESIII collaborationM. AblikimM. N. AchasovP. AdlarsonR. AlibertiA. AmorosoM. R. AnQ. AnY. BaiO. BakinaR. Baldini FerroliI. BalossinoY. BanV. BatozskayaD. BeckerK. BegzsurenN. BergerM. BertaniD. BettoniF. BianchiE. BiancoJ. BlomsA. BortoneI. BoykoR. A. BriereA. BrueggemannH. CaiX. CaiA. CalcaterraG. F. CaoN. CaoS. A. CetinX. Y. ChaiJ. F. ChangT. T. ChangW. L. ChangG. R. CheG. ChelkovC. ChenChao ChenG. ChenH. S. ChenM. L. ChenS. J. ChenS. M. ChenT. ChenX. R. ChenX. T. ChenY. B. ChenY. Q. ChenZ. J. ChenW. S. ChengS. K. ChoiX. ChuG. CibinettoS. C. CoenF. CossioJ. J. CuiH. L. DaiJ. P. DaiA. DbeyssiR. E. de BoerD. DedovichZ. Y. DengA. DenigI. DenysenkoM. DestefanisF. De MoriY. DingJ. DongL. Y. DongM. Y. DongX. DongS. X. DuZ. H. DuanP. EgorovY. L. FanJ. FangS. S. FangW. X. FangY. FangR. FarinelliL. FavaF. FeldbauerG. FeliciC. Q. FengJ. H. FengK FischerM. FritschC. FritzschC. D. FuY. W. FuH. GaoY. N. GaoYang GaoS. GarbolinoI. GarziaP. T. GeZ. W. GeC. GengE. M. GersabeckA GilmanK. GoetzenL. GongW. X. GongW. GradlM. GrecoM. H. GuY. T. GuC. Y GuanZ. L. GuanA. Q. GuoL. B. GuoR. P. GuoY. P. GuoA. GuskovX. T. HouW. Y. HanX. Q. HaoF. A. HarrisK. K. HeK. L. HeF. H. HeinsiusC. H. HeinzY. K. HengC. HeroldT. HoltmannP. C. HongG. Y. HouY. R. HouZ. L. HouH. M. HuJ. F. HuT. HuY. HuG. S. HuangK. X. HuangL. Q. HuangX. T. HuangY. P. HuangT. HussainN HüskenW. ImoehlM. IrshadJ. JacksonS. JaegerS. JanchivJ. H. JeongQ. JiQ. P. JiX. B. JiX. L. JiY. Y. JiZ. K. JiaP. C. JiangS. S. JiangT. J. JiangX. S. JiangY. JiangJ. B. JiaoZ. JiaoS. JinY. JinM. Q. JingT. JohanssonX. KuiS. K. KabanaN. Kalantar-NayestanakiX. L. KangX. S. KangR. KappertM. KavatsyukB. C. KeA. KhoukazR. KiuchiR. KliemtL. KochO. B. KolcuB. KopfM. KuessnerA. KupscW. KühnJ. J. LaneJ. S. LangeP. LarinA. LavaniaL. LavezziT. T. LeiZ. H. LeiH. LeithoffM. LellmannT. LenzC. LiC. H. LiCheng LiD. M. LiF. LiG. LiH. LiH. B. LiH. J. LiH. N. LiHui LiJ. R. LiJ. S. LiJ. W. LiKe LiL. J LiL. K. LiLei LiM. H. LiP. R. LiS. X. LiS. Y. LiT. LiW. D. LiW. G. LiX. H. LiX. L. LiXiaoyu LiY. G. LiZ. J. LiZ. X. LiZ. Y. LiC. LiangH. LiangY. F. LiangY. T. LiangG. R. LiaoL. Z. LiaoJ. LibbyA. LimphiratD. X. LinT. LinB. X. LiuB. J. LiuC. LiuC. X. LiuD. LiuF. H. LiuFang LiuFeng LiuG. M. LiuH. LiuH. B. LiuH. M. LiuHuanhuan LiuHuihui LiuJ. B. LiuJ. L. LiuJ. Y. LiuK. LiuK. Y. LiuKe LiuL. LiuL. C. LiuLu LiuM. H. LiuP. L. LiuQ. LiuS. B. LiuT. LiuW. K. LiuW. M. LiuX. LiuY. LiuY. B. LiuZ. A. LiuZ. Q. LiuX. C. LouF. X. LuH. J. LuJ. G. LuX. L. LuY. LuY. P. LuZ. H. LuC. L. LuoM. X. LuoT. LuoX. L. LuoX. R. LyuY. F. LyuF. C. MaH. L. MaJ. L. MaL. L. MaM. M. MaQ. M. MaR. Q. MaR. T. MaX. Y. MaY. MaF. E. MaasM. MaggioraS. MaldanerS. MaldeA. MangoniY. J. MaoZ. P. MaoS. MarcelloZ. X. MengJ. G. MesschendorpG. MezzadriH. MiaoT. J. MinR. E. MitchellX. H. MoN. Yu. MuchnoiY. NefedovF. NerlingI. B. NikolaevZ. NingS. NisarY. NiuS. L. OlsenQ. OuyangS. PacettiX. PanY. PanA. PathakY. P. PeiM. PelizaeusH. P. PengK. PetersJ. L. PingR. G. PingS. PluraS. PogodinV. PrasadV. P. PrasadF. Z. QiH. QiH. R. QiM. QiT. Y. QiS. QianW. B. QianC. F. QiaoJ. J. QinL. Q. QinX. P. QinX. S. QinZ. H. QinJ. F. QiuS. Q. QuC. F. RedmerK. J. RenA. RivettiV. RodinM. RoloG. RongCh. RosnerS. N. RuanA. SarantsevY. SchelhaasK. SchoenningM. ScodeggioK. Y. ShanW. ShanX. Y. ShanJ. F. ShangguanL. G. ShaoM. ShaoC. P. ShenH. F. ShenW. H. ShenX. Y. ShenB. A. ShiH. C. ShiJ. Y. ShiQ. Q. ShiR. S. ShiX. ShiJ. J. SongT. Z. SongW. M. SongY. X. SongS. SosioS. SpataroF. StielerY. J. SuG. B. SunG. X. SunH. SunH. K. SunJ. F. SunK. SunL. SunS. S. SunT. SunW. Y. SunY. SunY. J. SunY. Z. SunZ. T. SunY. X. TanC. J. TangG. Y. TangJ. TangY. A. TangL. Y TaoQ. T. TaoM. TatJ. X. TengV. ThorenW. H. TianY. TianZ. F. TianI. UmanB. WangB. L. WangC. W. WangD. Y. WangF. WangH. J. WangH. P. WangK. WangL. L. WangM. WangMeng WangS. WangT. WangT. J. WangW. WangW. H. WangW. P. WangX. WangX. F. WangX. J. WangX. L. WangY. WangY. D. WangY. F. WangY. H. WangY. N. WangY. Q. WangYaqian WangYi WangZ. WangZ. L. WangZ. Y. WangZiyi WangD. WeiD. H. WeiF. WeidnerS. P. WenC. W. WenzelU. WiednerG. WilkinsonM. WolkeL. WollenbergC. WuJ. F. WuL. H. WuL. J. WuX. WuX. H. WuY. WuY. J WuZ. WuL. XiaX. M. XianT. XiangD. XiaoG. Y. XiaoH. XiaoS. Y. XiaoY. L. XiaoZ. J. XiaoC. XieX. H. XieY. XieY. G. XieY. H. XieZ. P. XieT. Y. XingC. F. XuC. J. XuG. F. XuH. Y. XuQ. J. XuX. P. XuY. C. XuZ. P. XuF. YanL. YanW. B. YanW. C. YanX. Q YanH. J. YangH. L. YangH. X. YangTao YangY. YangY. F. YangY. X. YangYifan YangM. YeM. H. YeJ. H. YinZ. Y. YouB. X. YuC. X. YuG. YuT. YuX. D. YuC. Z. YuanL. YuanS. C. YuanX. Q. YuanY. YuanZ. Y. YuanC. X. YueA. A. ZafarF. R. ZengX. ZengY. ZengX. Y. ZhaiY. H. ZhanA. Q. ZhangB. L. ZhangB. X. ZhangD. H. ZhangG. Y. ZhangH. ZhangH. H. ZhangH. Q. ZhangH. Y. ZhangJ. J. ZhangJ. L. ZhangJ. Q. ZhangJ. W. ZhangJ. X. ZhangJ. Y. ZhangJ. Z. ZhangJianyu ZhangJiawei ZhangL. M. ZhangL. Q. ZhangLei ZhangP. ZhangQ. Y. ZhangShuihan ZhangShulei ZhangX. D. ZhangX. M. ZhangX. Y. ZhangY. ZhangY. T. ZhangY. H. ZhangYan ZhangYao ZhangZ. H. ZhangZ. L. ZhangZ. Y. ZhangG. ZhaoJ. ZhaoJ. Y. ZhaoJ. Z. ZhaoLei ZhaoLing ZhaoM. G. ZhaoS. J. ZhaoY. B. ZhaoY. X. ZhaoZ. G. ZhaoA. ZhemchugovB. ZhengJ. P. ZhengW. J. ZhengY. H. ZhengB. ZhongX. ZhongH. ZhouL. P. ZhouX. ZhouX. K. ZhouX. R. ZhouX. Y. ZhouY. Z. ZhouJ. ZhuK. ZhuK. J. ZhuL. ZhuL. X. ZhuS. H. ZhuS. Q. ZhuT. J. ZhuW. J. ZhuY. C. ZhuZ. A. ZhuJ. H. ZouJ. Zu
Source
Journal of High Energy Physics, Vol 2023, Iss 10, Pp 1-20 (2023)
Subject
e +-e − Experiments
Electroweak Interaction
Polarization
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1029-8479
Abstract
Abstract With data samples collected with the BESIII detector at seven energy points at s $$ \sqrt{s} $$ = 3.68 − 3.71 GeV, corresponding to an integrated luminosity of 333 pb −1, we present a study of the Λ transverse polarization in the e + e − → Λ Λ ¯ $$ \Lambda \overline{\Lambda} $$ reaction. The significance of polarization by combining the seven energy points is found to be 2.6σ including the systematic uncertainty, which implies a non-zero phase between the transition amplitudes of the Λ Λ ¯ $$ \Lambda \overline{\Lambda} $$ helicity states. The modulus ratio and the relative phase of EM-psionic form factors combined with all energy points are measured to be R Ψ = 0.71 − 0.10 + 0.10 $$ {0.71}_{-0.10}^{+0.10} $$ ± 0.03 and ∆ΦΨ = 23 − 8.0 + 8.8 $$ {23}_{-8.0}^{+8.8} $$ ± 1.6°, where the first uncertainties are statistical and the second systematic.