학술논문

The 2.5 MeV neutron flux monitor for MAST
Document Type
Source
Nuclear Instruments and Methods in Physics Research Section A. 753:72-83
Subject
Neutron flux monitor
Liquid scintillator
Fusion diagnostics
Language
English
ISSN
0168-9002
1872-9576
Abstract
A proof-of-principle collimated Neutron flux Camera (NC) monitor for the measurement of the 2.45 MeV neutron emission from the deuterium-deuterium fusion reactions has been developed, installed and put into use at the Mega Ampere Spherical Tokamak (MAST). The NC measures the spatial and time resolved volume integrated neutron emissivity in deuterium fusion plasmas in the presence of auxiliary plasma heating along two equatorial and two diagonal lines of sight whose tangency radius can be varied between plasma discharges. This paper describes the NC design principles, their technical realization and its performances illustrated with experimental observations of different plasma scenarios. Neutron. count rates in the range 0.1-1.5 MHz are routinely observed allowing time resolutions as high as 1 ms with a statistical uncertainty less than 10% and an energy threshold of 0.5 MeV. Examples of the effect of plasma instabilities on the neutron emission are presented. The good results obtained will be used for the design of the neutron flux camera monitor for MAST Upgrade.