학술논문

Tectonic and sedimentary processes along the ultraslow Knipovich spreading ridge
Document Type
Original Paper
Source
Marine Geophysical Research: An International Journal for the Study of the Earth Beneath the Sea. June 2014 35(2):89-103
Subject
Ultraslow spreading ridge
Glacial margin
Seafloor spreading processes
Knipovich Ridge
Language
English
ISSN
0025-3235
1573-0581
Abstract
2D multichannel seismic data and bathymetric records from the glaciated western Svalbard margin and the rift valley region of the ultraslow, and oblique-spreading, Knipovich Ridge are in this study interpreted to infer differences in seafloor spreading mechanisms and to identify sedimentary processes. Our results show that the rift flank geometry, the rift valley elevation and the active magmatism are closely linked. The inferred magmatic segments of the Knipovich Ridge exhibit high and steep rift flanks, whereas the rift flank heights of the proposed tectonic-dominated segments are lower and less steep. In addition, we observe significant rift flank asymmetry across the rift valley which can be partly explained by subsidence due to sediment loading. The identification of a huge sedimentary wedge on the western rift flank suggests that the oldest parts of these sediments have been transported from the western Svalbard margin and across the rift valley. However, we suggest that most of these sediments are glacimarine/hemipelagic sediments which have been deposited in the time period after the rift valley flanks had developed sufficiently to cut off the direct transport routes from the western Svalbard margin. We also observe thick current depositions on the western side, suggesting a strong along-slope influence of the West Spitsbergen Current during the Plio–Pleistocene time period.