학술논문

Prokaryotic community structure and predicted metabolism associated with hydrocarbon degradation in marine sediments from the Northwest Coast of Baja California, Mexico
Document Type
Original Paper
Source
Journal of Soils and Sediments. :1-19
Subject
16S rRNA gene
Marine bacteria
Marine sediments
Illumina sequencing
Polycyclic aromatic hydrocarbon
Language
English
ISSN
1439-0108
1614-7480
Abstract
Purpose: The coastal environment is a fragile ecosystem exposed to anthropogenic pressures, including pollution. Microbial ecology studies have demonstrated the importance of microbial metabolism in marine sediments to maintain nutrient cycling; however, recalcitrant contaminants such as polycyclic aromatic hydrocarbons (PAHs) could affect these microbial communities. This study aimed to investigate the diversity of microbial communities on marine sediments from the North Occidental Coast of Baja California, Mexico (NOCBC) and their potential aromatic hydrocarbon catabolic pathways.Materials and methods: During the Southern California Bight Oceanographic Campaign, sediment samples were collected in September 2018 from 33 coastal sites from the Tijuana-San Diego border to Punta Banda Cape, Ensenada (Mexico). The samples were analyzed for grain size, total PAHs, and organic carbon (OC) concentrations. Next, the bacterial communities were identified using Illumina high-throughput sequencing of 16S rRNA genes, and hydrocarbonoclastic function was inferred using PICRUSt2.Results: According to Canadian and EPA guidelines for marine sediments, the total PAH concentration from the samples suggested a low pollution impact. Sequence analysis identified 27 phyla and 36 candidate divisions across the sampled sediments. The dominant phyla were Pseudomonadota, Bacteroidota, Planctomycetota, and Crenarchaeota. At the family level, the most prominent were Piscirickettsiaceae, OM60, Flavobacteriaceae, Pirellulaceae, and Cenarchaeaceae. The key genera were identified as Nitrosopumilus, Lutimonas, and Desulfococcus; nine Amplicon Sequence Variants (ASVs) represented the core microbiome across the sites, comprising about 7.68% of the total reads. The predictive functional analysis detected 47 principal pathways involved in hydrocarbon degradation, including catechol, protocatechuate, and aerobic toluene degradation routes.Conclusions: Our data suggest the presence of hot spots for aromatic degradative pathways in those sampling sites near cities, where a significant proportion of aromatic hydrocarbon-degrading microorganisms may be present. This study represents the first census of the prokaryotic communities from marine sediments of NOCBC, which harbors diverse communities with hydrocarbonoclastic potential. These results could provide constructive guidelines on ecosystem management and pollution mitigation actions.