학술논문

Study of the process e+e-→π+π-π0 using initial state radiation with BABAR
Document Type
article
Source
Physical Review D. 104(11)
Subject
Nuclear and Plasma Physics
Particle and High Energy Physics
Synchrotrons and Accelerators
Physical Sciences
Astronomical and Space Sciences
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Quantum Physics
Nuclear & Particles Physics
Mathematical physics
Astronomical sciences
Particle and high energy physics
Language
Abstract
The process e+e-→π+π-π0γ is studied at a center-of-mass energy near the D(4S) resonance using a data sample of 469 fb-1 collected with the BABAR detector at the PEP-II collider. We have performed a precise measurement of the e+e-→π+π-π0 cross section in the center-of-mass energy range from 0.62 to 3.5 GeV. In the energy regions of the ω and φ resonances, the cross section is measured with a systematic uncertainty of 1.3%. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured e+e-→π+π-π0 cross section from threshold to 2.0 GeV is (45.86±0.14±0.58)×10-10. From the fit to the measured 3π mass spectrum we have determined the resonance parameters Γ(ω→e+e-)B(ω→π+π-π0)=(0.5698±0.0031±0.0082) keV, Γ(φ→e+e-)B(φ→π+π-π0)=(0.1841±0.0021±0.0080) keV, and B(ρ→3π)=(0.88±0.23±0.30)×10-4. The significance of the ρ→3π signal is greater than 6σ. For the J/ψ resonance we have measured the product Γ(J/ψ→e+e-)B(J/ψ→3π)=(0.1248±0.0019±0.0026) keV.