학술논문

Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I
Document Type
article
Source
European Physical Journal C. 75(6)
Subject
Nuclear and Plasma Physics
Synchrotrons and Accelerators
Physical Sciences
physics.ins-det
nucl-ex
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Quantum Physics
Nuclear & Particles Physics
Astronomical sciences
Atomic
molecular and optical physics
Particle and high energy physics
Language
Abstract
An optimized digital shaping filter has been developed for the Gerda experiment which searches for neutrinoless double beta decay in $$^{76}$$76Ge. The Gerda Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) corresponding to 10 % at the $$Q$$Q value for $$0u \beta \beta $$0νββ decay in $$^{76}$$76Ge is obtained. This is possible thanks to the enhanced low-frequency noise rejection of this Zero Area Cusp (ZAC) signal shaping filter.