학술논문

Synthesis of Galα(1,3)Galβ(1,4)GlcNAcα-, Galβ(1,4)GlcNAcα- and GlcNAc-containing neoglycoproteins and their immunological evaluation in the context of Chagas disease
Document Type
Academic Journal
Source
Glycobiology. Jan 01, 2016 26(1):39-50
Subject
Language
English
ISSN
0959-6658
Abstract
The protozoan parasite, Trypanosoma cruzi, the etiologic agent of Chagas disease (ChD), has a cell surface covered by immunogenic glycoconjugates. One of the immunodominant glycotopes, the trisaccharide Galα(1,3)Galβ(1,4)GlcNAcα, is expressed on glycosylphosphatidylinositol-anchored mucins of the infective trypomastigote stage of T. cruzi and triggers high levels of protective anti-α-Gal antibodies (Abs) in infected individuals. Here, we have efficiently synthesized the mercaptopropyl glycoside of that glycotope and conjugated it to maleimide-derivatized bovine serum albumin (BSA). Chemiluminescent-enzyme-linked immunosorbent assay revealed that Galα(1,3)Galβ(1,4)GlcNAcα-BSA is recognized by purified anti-α-Gal Abs from chronic ChD patients ∼230-fold more strongly than by anti-α-Gal Abs from sera of healthy individuals (NHS anti-α-Gal). Similarly, the pooled sera of chronic Chagas disease patients (ChHSP) recognized Galα(1,3)Galβ(1,4)GlcNAcα ∼20-fold more strongly than pooled NHS. In contrast, the underlying disaccharide Galβ(1,4)GlcNAcα and the monosaccharide GlcNAcα or GlcNAcβ conjugated to BSA are poorly or not recognized by purified anti-α-Gal Abs or sera from Chagasic patients or healthy individuals. Our results highlight the importance of the terminal Galα moiety for recognition by Ch anti-α-Gal Abs and the lack of Abs against nonself Galβ(1,4)GlcNAcα and GlcNAcα glycotopes. The substantial difference in binding of Ch vs. NHS anti-α-Gal Abs to Galα(1,3)Galβ(1,4)GlcNAcα-BSA suggests that this neoglycoprotein (NGP) might be suitable for experimental vaccination. To this end, the Galα(1,3)Galβ(1,4)GlcNAcα-BSA NGP was then used to immunize α1,3-galactosyltransferase-knockout mice, which produced antibody titers 40-fold higher as compared with pre-immunization titers. Taken together, our results indicate that the synthetic Galα(1,3)Galβ(1,4)GlcNAcα glycotope coupled to a carrier protein could be a potential diagnostic and vaccine candidate for ChD.