학술논문

SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects
Document Type
Report
Source
Nature Structural and Molecular Biology. August 2020, Vol. 27 Issue 8, p763, 5 p.
Subject
United Kingdom
Language
English
ISSN
1545-9993
Abstract
Author(s): Antoni G. Wrobel [sup.1] , Donald J. Benton [sup.1] , Pengqi Xu [sup.2] [sup.1] , Chloë Roustan [sup.3] , Stephen R. Martin [sup.3] , Peter B. Rosenthal [sup.4] , [...]
SARS-CoV-2 is thought to have emerged from bats, possibly via a secondary host. Here, we investigate the relationship of spike (S) glycoprotein from SARS-CoV-2 with the S protein of a closely related bat virus, RaTG13. We determined cryo-EM structures for RaTG13 S and for both furin-cleaved and uncleaved SARS-CoV-2 S; we compared these with recently reported structures for uncleaved SARS-CoV-2 S. We also biochemically characterized their relative stabilities and affinities for the SARS-CoV-2 receptor ACE2. Although the overall structures of human and bat virus S proteins are similar, there are key differences in their properties, including a more stable precleavage form of human S and about 1,000-fold tighter binding of SARS-CoV-2 to human receptor. These observations suggest that cleavage at the furin-cleavage site decreases the overall stability of SARS-CoV-2 S and facilitates the adoption of the open conformation that is required for S to bind to the ACE2 receptor. Cryo-EM and functional analyses of furin-cleaved spike from SARS-CoV-2 and the closely related spike from bat virus RaTG13 reveal differences in protein stability and binding to human receptor ACE2.