학술논문

High Step-Up Quasi-Z Source DC–DC Converter
Document Type
Periodical
Source
IEEE Transactions on Power Electronics IEEE Trans. Power Electron. Power Electronics, IEEE Transactions on. 33(12):10563-10571 Dec, 2018
Subject
Power, Energy and Industry Applications
Aerospace
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Fields, Waves and Electromagnetics
General Topics for Engineers
Nuclear Engineering
Signal Processing and Analysis
Transportation
Switches
Stress
Inductors
Capacitors
DC-DC power converters
Impedance
Circuit faults
DC–DC converter
high step-up
impedance network
quasi-Z source (QZS)
Language
ISSN
0885-8993
1941-0107
Abstract
In this paper, a high step-up quasi- Z Source (QZS) dc–dc converter is proposed. This converter uses a hybrid switched-capacitors switched-inductor method in order to achieve high voltage gains. The proposed converter have resolved the voltage gain limitation of the basic QZS dc–dc converter while keeping its main advantages, such as continuous input current and low voltage stress on capacitors. Compared to the basic converter, the duty cycle is not limited, and the voltage stress on the diodes and switch is not increased. In addition to these features, the proposed converter has a flexible structure, and extra stages could be added to it in order to achieve even higher voltage gains without increasing the voltage stress on devices or limiting the duty cycle. The operation principle of the converter and related relationships and waveforms are presented in the paper. Also, a comprehensive comparison between the proposed and other QZS based dc–dc converters is provided which confirms the superiority of the proposed converter. Simulations are done in power systems computer aided design (PSCAD) in order to investigate the maximum power point tracking (MPPT) capability of the converter. In addition, the valid performance and practicality of the converter are studied through the results obtained from the laboratory built prototype.