학술논문

Modeling the Influence of Precipitation on L-Band SMAP Observations of Ocean Surfaces Through Machine Learning Approach
Document Type
Periodical
Source
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of. 17:10291-10305 2024
Subject
Geoscience
Signal Processing and Analysis
Power, Energy and Industry Applications
Rain
Sea surface
Ocean temperature
Sea measurements
Atmospheric modeling
Atmospheric measurements
L-band
microwave remote sensing
radiometer
rain
Language
ISSN
1939-1404
2151-1535
Abstract
A new forward model (FM) was developed to characterize the influence of precipitation on L-band passive ocean surface measurements. The FM, which relates rain-induced brightness temperature (TB) variations to the rain rate and wind speed (WS), was established through a machine learning approach (referred to as the ML-FM). The soil moisture active passive (SMAP) data matched with integrated multisatellite retrievals for global precipitation measurement (IMERG) rain rate data and cross-calibrated multiplatform (CCMP) wind data were binned as a function of the rain rate, WS, and wind direction. The ML-FM was validated by comparing the simulated top-of-atmosphere (TOA) TB values with SMAP measurements. The results showed favorable agreement between the ML-FM outputs and SMAP data, with a root mean square error (RMSE) smaller than 0.55 K for both the horizontal and vertical polarizations. The validation results for ensuring more reasonable rainfall intensity distributions showed that the ML-FM returned stable results with a slightly reduced RMSE of ∼0.75 K for both the horizontal and vertical polarizations. Based on the ML-FM, we found that sea surface emission exhibited significant dependence on the rain rate for both polarizations. In addition, the ML-FM demonstrated signal saturation when the rain rate exceeded 45 mm/h, while precipitation slightly affected the directional characteristics of sea surface emission. These effects accounted for ∼0.3 K at a rain rate of 50 mm/h. Overall, our analyses demonstrated that the proposed ML-FM achieved superior performance in retrieving the TOA TB for both the vertical and horizontal polarizations with a higher accuracy than existing models.