학술논문

Microwave Reflectometry Sensing System for Low-Cost in-vivo Skin Cancer Diagnostics
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:13918-13928 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Dielectrics
Medical services
Skin cancer
Probes
Microwave theory and techniques
Lesions
Reflectometry
Clinical diagnosis
Cancer diagnostics
dielectric permittivity
frequency-domain measurements
in-vivo measurements
microwave reflectometry
open ended coaxial probe
PCA
skin abnormalities
skin cancer
Language
ISSN
2169-3536
Abstract
Skin cancer is one of the most commonly diffused cancers in the world and its incidence rates have constantly increased in recent years. At the current state of the art, there is a lack of objective, quick and non-invasive methods for diagnosing this condition; this, combined with hospital crowding, may lead to late diagnosis. Starting from these considerations, this paper addresses the implementation of a microwave reflectometry based-system that can be used as a non-invasive method for the in-vivo diagnosis and early detection of biological abnormalities, such as skin cancer. This system relies on the dielectric contrasts existing between normal and anomalous skin tissues at microwave frequencies (in a frequency range up to 3 GHz). In particular, a truncated open-ended coaxial probe was designed, manufactured and tested to sense (in combination with a miniaturized Vector Network Analyzer) the variations of skin dielectric properties in a group of volunteer patients. The specific data processing demonstrated the suitability of the system for discriminating malignant and benign lesions from healthy skin, ensuring simultaneously effectiveness, low cost, compactness, comfortability, and high sensitivity.