학술논문

Conceptual design of a 960-TW accelerator powered by impedance-matched Marx generators
Document Type
Conference
Source
2017 IEEE 21st International Conference on Pulsed Power (PPC) Pulsed Power (PPC), 2017 IEEE 21st International Conference on. :1-8 Jun, 2017
Subject
Components, Circuits, Devices and Systems
Engineered Materials, Dielectrics and Plasmas
Fields, Waves and Electromagnetics
Power, Energy and Industry Applications
Jupiter
Integrated circuit modeling
Impedance
Capacitors
Physics
Inductance
Power transformer insulation
Language
ISSN
2158-4923
Abstract
We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for advanced high-energy-density-physics experiments. The prime power source of the machine consists of 210 impedance-matched Marx generators (IMGs). Each IMG drives a 150-ns-long coaxial-transmission-line impedance transformer. The coaxial lines provide a minimum of 300 ns of transit-time isolation between each pair of IMGs. The lines in turn drive six radial-transmission-line impedance transformers, which transport the power generated by the IMGs to a six-level vacuum-insulator stack. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs); these are joined in parallel at a 12-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics load. Since the accelerator would be the largest and most-powerful pulsed-power machine developed to date, we refer to it as Jupiter. The conceptual design of Jupiter is 72 m in diameter, stores 140 MJ of electrical energy, and generates 960 TW of peak electrical power at the output of the IMG system. The design delivers 2700 TW, 67 MA, and 9.2 MJ in a 110-ns pulse to a 0D magnetized-liner inertial-fusion (MagLIF) target. The principal goal of the design is to achieve high-yield thermonuclear fusion; i.e., a fusion yield that exceeds the energy initially stored by the accelerator's capacitors.