학술논문

Rectangular Orthogonal Digital Filter Banks Based on Extended Gaussian Functions
Document Type
Periodical
Source
Journal of Lightwave Technology J. Lightwave Technol. Lightwave Technology, Journal of. 40(12):3709-3722 Jun, 2022
Subject
Communication, Networking and Broadcast Technologies
Photonics and Electrooptics
Digital filters
Filter banks
Optical filters
OFDM
Prototypes
Attenuation
Multiplexing
Extended Gaussian function (EGF)
filter bank
multi-channel aggregation
square-root raised-cosine (SRRC)
Language
ISSN
0733-8724
1558-2213
Abstract
Rectangular orthogonal digital filter banks (ODFBs) based on square-root-raised-cosine (SRRC) functions are widely utilised to realise flexible and elastic multi-channel aggregations for fixed and mobile networks. However, long digital filter lengths are required to minimize digital filtering-associated signal distortions. In this paper, based on the extended Gaussian function (EGF), a novel rectangular ODFB with excellent robustness against the short digital filter length-induced truncation effect is proposed. Optimum digital filter parameters of the EGF-based ODFBs are identified and verified in multi-channel hybrid OFDM-digital filter multiple access (DFMA) PONs based on intensity modulation and direct detection (IMDD). By making use of the identified optimum digital filter parameters, extensive comparisons of digital filter characteristics and corresponding multi-channel upstream PON performances are made between the EGF-based ODFBs and the SRRC-based ODFBs. It is shown that to achieve a similar aggregated upstream signal transmission capacity, the EGF-based ODFB reduces the digital filter DSP complexity by a factor of 4. For a digital filter length as short as 8, in comparison with the SRRC-based ODFB, the EGF-based ODFB introduces >1.5 dB (>0.8 dB) improvements in upstream receiver sensitivity for 5-bits (8-bits) DACs/ADCs, increases the aggregated upstream signal transmission capacity by >5.5%, enlarges the ONU launch power dynamic range by >2.5 dB and improves the frequency offset tolerance by a factor of >1.5. In addition, the EGF-based ODFB also enhances upstream performance robustness against ONU symbol timing offsets.