학술논문

Fabrication Development for SPT-SLIM, a Superconducting Spectrometer for Line Intensity Mapping
Document Type
Periodical
Source
IEEE Transactions on Applied Superconductivity IEEE Trans. Appl. Supercond. Applied Superconductivity, IEEE Transactions on. 33(5):1-6 Aug, 2023
Subject
Fields, Waves and Electromagnetics
Engineered Materials, Dielectrics and Plasmas
Optical filters
Filter banks
Superconducting filters
Microstrip
Inductors
Transducers
Detectors
Superconducting device fabrication
microstrip resonators
millimeter wave detectors
submillimeter wave detectors
superconducting resonators
Language
ISSN
1051-8223
1558-2515
2378-7074
Abstract
Line Intensity Mapping (LIM) is a new observational technique that uses low-resolution observations of line emission to efficiently trace the large-scale structure of the Universe out to high redshift. Common mm/sub-mm emission lines are accessible from ground-based observatories, and the requirements on the detectors for LIM at mm-wavelengths are well matched to the capabilities of large-format arrays of superconducting sensors. We describe the development of an $ R$ = $\lambda / \Delta \lambda = 300$ on-chip superconducting filter-bank spectrometer covering the 120–180 GHz band for future mm-LIM experiments, focusing on SPT-SLIM, a pathfinder LIM instrument for the South Pole Telescope. Radiation is coupled from the telescope optical system to the spectrometer chip via an array of feedhorn-coupled orthomode transducers. Superconducting microstrip transmission lines then carry the signal to an array of channelizing half-wavelength resonators, and the output of each spectral channel is sensed by a lumped element kinetic inductance detector (leKID). Key areas of development include incorporating new low-loss dielectrics to improve both the achievable spectral resolution and optical efficiency and development of a robust fabrication process to create a galvanic connection between ultra-pure superconducting thin-films to realize multi-material (hybrid) leKIDs. We provide an overview of the spectrometer design, fabrication process, and prototype devices.