학술논문

DEDU: Dual-Enhancing Dense-UNet for Lowlight Image Enhancement and Denoise
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:24071-24078 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Image enhancement
Brightness
Training
Task analysis
Computer architecture
Computational modeling
Deep learning
Convolutional neural networks
Low-light enhancement
denoise
deep learning
CNN
DFC attention
Language
ISSN
2169-3536
Abstract
In this paper, we propose an innovative image enhancement algorithm called “Dual-Enhancing-Dense-UNet (DEDUNet)” that simultaneously performs image brightness enhancement and reduces noise. This model is based on Convolutional Neural Network (CNN) algorithms and incorporates innovative techniques such as Decoupled Fully Connection (DFC) attention, skip connections, shortcut, Cross-Stage-Partial (CSP) and dense blocks to address the brightness enhancement and noise removal aspects of image enhancement. The dual approach to image enhancement offers a new solution for restoring and improving high-quality images, presenting new opportunities in the fields of computer vision and image processing. Our experimental results substantiate the superior performance of the proposed algorithm, showcasing significant improvements in key performance indicators. Specifically, the algorithm achieves a Peak Signal-to-Noise Ratio (PSNR) of 19.17, Structural Similarity Index (SSIM) of 0.71, Learned Perceptual Image Patch Similarity (LPIPS) of 0.30, Mean Absolute Error (MAE) of 0.09, and a Multiply-Accumulate (MAC) of 0.696G. These results highlight the algorithm’s remarkable image quality enhancement capabilities, demonstrating a considerable advantage over existing methods. Experimental results demonstrate the superior performance and efficiency of the proposed algorithm in terms of image quality improvement compared to existing methods.