학술논문

A Radar and Sonar-Based Hybrid Forefield Reconnaissance System for Melting Probes for Englacial Exploration
Document Type
Periodical
Source
IEEE Transactions on Geoscience and Remote Sensing IEEE Trans. Geosci. Remote Sensing Geoscience and Remote Sensing, IEEE Transactions on. 62:1-15 2024
Subject
Geoscience
Signal Processing and Analysis
Probes
Radar
Reservoirs
Sonar
Heating systems
Snow
Permittivity
Field test
glacier
ice exploration
melting probes
permittivity probe
radar
sonar
Language
ISSN
0196-2892
1558-0644
Abstract
The polar regions of Mars as well as the ice-covered moons such as Saturn’s Enceladus and Jupiter’s Europa have emerged as significant targets for ongoing and future space missions focused on investigating potentially habitable celestial bodies within our solar system. A key objective of these missions is to explore subglacial water reservoirs lying beneath the ice crusts of moons, such as Europa. The utilization of melting probes shows immense promise for achieving this goal. However, in addition to the capability to melt through the ice body, such a probe must also be able to identify the ice–water interface as well as obstacles in its path, such as cavities or meteoric rocks. To address these challenges, we present a forefield reconnaissance system (FRS) featuring a hybrid sensing approach that combines radar and sonar both integrated into the tip of a melting probe. Furthermore, the system includes an in situ permittivity sensor to ensure accurate radar range assignment and to gather scientific data about the ice body. The system has been integrated into a demonstrator melting probe and tested in a terrestrial analog scenario. Measurements at the Jungfraufirn in Switzerland confirm the potential of the developed system.