학술논문

Design and Analysis of a Low Profile Millimeter-Wave Band Vivaldi MIMO Antenna for Wearable WBAN Applications
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:70420-70433 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Wireless communication
Body area networks
Antennas
MIMO communication
Bandwidth
Antenna measurements
Directive antennas
Vivaldi antennas
Antenna
MIMO antenna
on-body antenna
Vivaldi
wireless body area network (WBAN)
Language
ISSN
2169-3536
Abstract
The development of a reliable Wireless Body Area Network (WBAN) relies significantly on the quality of wearable antennas. Therefore, this paper proposes a low-profile four-element Multi-Input-Multi-Output (MIMO) antenna for wearable millimeter-wave (mm-wave) WBAN applications. The MIMO antenna structure incorporates a standard Vivaldi antenna and a frequency-selective surface that encompasses the 28 GHz and 30 GHz of the mm-wave band with a 36.44% fractional bandwidth. It offers inter-element isolation of less than −20 dB in a compact space of $16\times 20$ mm2. Conformability analysis, along with testing on Gustav’s model chest, hand, and leg, was evaluated in terms of the antenna impedance bandwidth, gain, efficiency, and radiation pattern. The simulated characteristics of the MIMO antenna were tested through measurements in free space and on the human body using a prototype of the antenna. Furthermore, the MIMO antenna exhibits a low envelope correlation coefficient of less than 0.24, high diversity gain of greater than 9.95 dB, and an acceptable total active reflection coefficient of less than −10 dB. To ensure safety, the Specific Absorption Rate (SAR) analysis revealed acceptable levels of 0.397 and 0.267 (W/kg) at 28 GHz and 30 GHz, respectively. The proposed MIMO design is suitable for wearable WBAN applications owing to its small size, consistent gain, and compatibility with the human body in terms of a constant impedance bandwidth and end-fire radiation pattern.