학술논문

Modeling Nonlinear Dynamics in Human–Machine Interaction
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:58664-58678 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Behavioral sciences
Mathematical models
Physiology
Nonlinear dynamical systems
Neuromuscular
Task analysis
Sensors
Human--machine interaction
human-in-the-loop
decision making
human control modeling
machine learning
Language
ISSN
2169-3536
Abstract
In Human–Machine interaction, the possibility of increasing the intelligence and adaptability of the controlled plant by imitating human control behavior has been an objective of many research efforts in the last decades. From classical control-theory human control models to modern machine learning, neural networks, and reinforcement learning paradigms, the common denominator is the effort to model complex nonlinear dynamics typical of human activity. However, these approaches are very different, and finding a guiding line is challenging. This review investigates state-of-the-art techniques from the perspective of human control modeling, considering the different physiological districts involved as the starting point. The focus is mainly directed toward nonlinear dynamical system modeling, which constitutes the main challenge in this field. In the end, transport systems are presented as a technological scenario in which the discussed techniques are mainly applied.