학술논문

Three-Dimensional Shear Wave Elastography Using Acoustic Radiation Force and a 2-D Row-Column Addressing (RCA) Array
Document Type
Periodical
Source
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control IEEE Trans. Ultrason., Ferroelect., Freq. Contr. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on. 71(4):448-458 Apr, 2024
Subject
Fields, Waves and Electromagnetics
Imaging
Elastography
Ultrasonic imaging
Acoustics
Phantoms
Frequency control
Elasticity
3-D shear wave elastography (SWE)
acoustic radiation force (ARF)
comb-push shear elastography (CUSE)
row-column addressing (RCA) array
ultrafast ultrasound imaging
Language
ISSN
0885-3010
1525-8955
Abstract
Acoustic radiation force (ARF)-based shear wave elastography (SWE) is a clinically available ultrasound imaging mode that noninvasively and quantitatively measures tissue stiffness. Current implementations of ARF-SWE are largely limited to 2-D imaging, which does not provide a robust estimation of heterogeneous tissue mechanical properties. Existing 3-D ARF-SWE solutions that are clinically available are based on wobbler probes, which cannot provide true 3-D shear wave motion detection. Although 3-D ARF-SWE based on 2-D matrix arrays have been previously demonstrated, they do not provide a practical solution because of the need for a high channel-count ultrasound system (e.g., 1024-channel) to provide adequate volume rates and the delicate circuitries (e.g., multiplexers) that are vulnerable to the long-duration “push” pulses. To address these issues, here we propose a new 3-D ARF-SWE method based on the 2-D row-column addressing (RCA) array which has a much lower element count (e.g., 256), provides an ultrafast imaging volume rate (e.g., 2000 Hz), and can withstand the push pulses. In this study, we combined the comb-push shear elastography (CUSE) technique with 2-D RCA for enhanced SWE imaging field-of-view (FOV). In vitro phantom studies demonstrated that the proposed method had robust 3-D SWE performance in both homogenous and inclusion phantoms. An in vivo study on a breast cancer patient showed that the proposed method could reconstruct 3-D elasticity maps of the breast lesion, which was validated using a commercial ultrasound scanner. These results demonstrate strong potential for the proposed method to provide a viable and practical solution for clinical 3-D ARF-SWE.