학술논문

Disturbance Propagation in Power Grids With High Converter Penetration
Document Type
Periodical
Source
Proceedings of the IEEE Proc. IEEE Proceedings of the IEEE. 111(7):873-890 Jul, 2023
Subject
General Topics for Engineers
Engineering Profession
Aerospace
Bioengineering
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Fields, Waves and Electromagnetics
Geoscience
Nuclear Engineering
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Power, Energy and Industry Applications
Communication, Networking and Broadcast Technologies
Photonics and Electrooptics
Generators
Mathematical models
Power system dynamics
Frequency control
Renewable energy sources
Voltage control
Voltage measurement
Converters
Electromechanical systems
electromechanical wave (EMW) propagation
renewable energy resources
US eastern interconnection (EI)
Language
ISSN
0018-9219
1558-2256
Abstract
High penetration of converter-interfaced renewable energy resources will significantly change the swing dynamics between synchronous generators (SGs) in future power systems. This article examines the impact of high converter penetration on wave-like disturbance propagation arising from sudden generator and load losses in radial (1-D) and meshed (2-D) power systems. To keep the uniformity assumption as converters are introduced, the rating of each SG is decreased with a converter resource making up for the reduction. Numerical simulations demonstrate that as the penetration level of constant-power grid-following (GFL) converters increases, the speed of disturbance propagation increases due to the reduced system inertia. Naturally, converters with the capabilities to positively respond to disturbances would in turn reduce the propagation speed. Analytical studies based on continuum models are presented for the 2-D system with SGs and constant-power GFL converters in order to visualize the disturbance propagation and validate numerical simulations based on differential-algebraic equations. In addition, fast active power control of converters can slow down the electromechanical wave (EMW) propagation and even contain it. These concepts are illustrated on the idealized radial and meshed systems and a reduced model of the U.S. eastern interconnection.