학술논문

Use of the energy waveform electrocardiogram to detect subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus
Document Type
article
Source
Cardiovascular Diabetology, Vol 23, Iss 1, Pp 1-12 (2024)
Subject
Diabetes mellitus
Heart failure
Electrocardiogram
Echocardiography
Diseases of the circulatory (Cardiovascular) system
RC666-701
Language
English
ISSN
1475-2840
Abstract
Abstract Background Recent guidelines propose N-terminal pro-B-type natriuretic peptide (NT-proBNP) for recognition of asymptomatic left ventricular (LV) dysfunction (Stage B Heart Failure, SBHF) in type 2 diabetes mellitus (T2DM). Wavelet Transform based signal-processing transforms electrocardiogram (ECG) waveforms into an energy distribution waveform (ew)ECG, providing frequency and energy features that machine learning can use as additional inputs to improve the identification of SBHF. Accordingly, we sought whether machine learning model based on ewECG features was superior to NT-proBNP, as well as a conventional screening tool—the Atherosclerosis Risk in Communities (ARIC) HF risk score, in SBHF screening among patients with T2DM. Methods Participants in two clinical trials of SBHF (defined as diastolic dysfunction [DD], reduced global longitudinal strain [GLS ≤ 18%] or LV hypertrophy [LVH]) in T2DM underwent 12-lead ECG with additional ewECG feature and echocardiography. Supervised machine learning was adopted to identify the optimal combination of ewECG extracted features for SBHF screening in 178 participants in one trial and tested in 97 participants in the other trial. The accuracy of the ewECG model in SBHF screening was compared with NT-proBNP and ARIC HF. Results SBHF was identified in 128 (72%) participants in the training dataset (median 72 years, 41% female) and 64 (66%) in the validation dataset (median 70 years, 43% female). Fifteen ewECG features showed an area under the curve (AUC) of 0.81 (95% CI 0.787–0.794) in identifying SBHF, significantly better than both NT-proBNP (AUC 0.56, 95% CI 0.44–0.68, p