학술논문

Can the post-ruminal urea release impact liver metabolism, and nutritional status of beef cows at late gestation?
Document Type
article
Source
PLoS ONE, Vol 18, Iss 10, p e0293216 (2023)
Subject
Medicine
Science
Language
English
ISSN
1932-6203
Abstract
We aimed to evaluate the effects of post-ruminal supply of urea (PRU) on nutritional status, and liver metabolism of pregnant beef cows during late gestation. Twenty-four Brahman dams, pregnant from a single sire, and weighing 545 kg ± 23 kg were confined into individual pens at 174 ± 23 d of gestation, and randomly assigned into one of two dietary treatments up to 270 d of gestation: Control (CON, n = 12), consisting of a basal diet supplemented with conventional urea, where the cows were fed with diets containing 13.5 g conventional urea per kg dry matter; and PRU (PRU, n = 12), consisting of a basal diet supplemented with a urea coated to extensively prevent ruminal degradation while being intestinally digestible, where the cows were fed with diets containing 14,8 g urea protected from ruminal degradation per kg dry matter. Post-ruminal supply of urea reduced the urine levels of 3-methylhistidine (P = 0.02). There were no differences between treatments for dry matter intake (DMI; P = 0.76), total digestible nutrient (TDN) intake (P = 0.30), and in the body composition variables, such as, subcutaneous fat thickness (SFT; P = 0.72), and rib eye area (REA; P = 0.85). In addition, there were no differences between treatments for serum levels of glucose (P = 0.87), and serum levels of glucogenic (P = 0.28), ketogenic (P = 0.72), glucogenic, and ketogenic (P = 0.45) amino acids, neither for urea in urine (P = 0.51) as well as urea serum (P = 0.30). One the other hand, enriched pathways were differentiated related to carbohydrate digestion, and absorption, glycolysis, pyruvate metabolism, oxidative phosphorylation, pentose phosphate pathway, and biosynthesis of amino acids of the exclusively expressed proteins in PRU cows. Shifting urea supply from the rumen to post-ruminal compartments decreases muscle catabolism in cows during late gestation. Our findings indicate that post-ruminal urea supplementation for beef cows at late gestation may improve the energy metabolism to support maternal demands. In addition, the post-ruminal urea release seems to be able to trigger pathways to counterbalance the oxidative stress associated to the increase liver metabolic rate.