학술논문

Cortical connectivity in the face of congenital structural changes—A case of homozygous LAMC3 mutation
Document Type
article
Source
Brain and Behavior, Vol 11, Iss 8, Pp n/a-n/a (2021)
Subject
diffusion tensor imaging
functional connectivity
LAMC3
probabilistic tracktography
resting state
structural connectivity
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Language
English
ISSN
2162-3279
Abstract
Abstract The homozygous LAMC3 gene mutation is associated with severe bilateral smoothening and thickening of the lateral occipital cortex . Despite this and further significant changes in gray matter structure, a patient harboring this mutation exhibited a range of remarkably intact perceptual abilities . One possible explanation of this perceptual sparing could be that the white matter structural integrity and functional connectivity in relevant pathways remained intact. To test this idea, we used diffusion tensor and functional magnetic resonance imaging to investigate functional connectivity in resting‐state networks in major structural pathways involved in object perception and visual attention and corresponding microstructural integrity in a patient with homozygous LAMC3 mutation and sex, age, education, and socioeconomically matched healthy control group. White matter microstructural integrity results indicated widespread disruptions in both intra‐ and interhemispheric structural connections except inferior longitudinal fasciculus. With a few exceptions, the functional connectivity between the patient's adjacent gray matter regions of major white matter tracts of interest was conserved. In addition, functional localizers for face, object, and place areas showed similar results with a representative control, providing an explanation for the patient's intact face, place, and object recognition abilities. To generalize this finding, we also compared functional connectivity between early visual areas and face, place, and object category‐selective areas, and we found that the functional connectivity of the patient was not different from the control group. Overall, our results provided complementary information about the effects of LAMC3 gene mutation on the human brain including intact temporo‐occipital structural and functional connectivity that are compatible with preserved perceptual abilities.