학술논문

GIGYF1 disruption associates with autism and impaired IGF-1R signaling
Document Type
article
Source
The Journal of Clinical Investigation, Vol 132, Iss 19 (2022)
Subject
Genetics
Neuroscience
Medicine
Language
English
ISSN
1558-8238
Abstract
Autism spectrum disorder (ASD) represents a group of neurodevelopmental phenotypes with a strong genetic component. An excess of likely gene-disruptive (LGD) mutations in GIGYF1 was implicated in ASD. Here, we report that GIGYF1 is the second-most mutated gene among known ASD high–confidence risk genes. We investigated the inheritance of 46 GIGYF1 LGD variants, including the highly recurrent mutation c.333del:p.L111Rfs*234. Inherited GIGYF1 heterozygous LGD variants were 1.8 times more common than de novo mutations. Among individuals with ASD, cognitive impairments were less likely in those with GIGYF1 LGD variants relative to those with other high-confidence gene mutations. Using a Gigyf1 conditional KO mouse model, we showed that haploinsufficiency in the developing brain led to social impairments without significant cognitive impairments. In contrast, homozygous mice showed more severe social disability as well as cognitive impairments. Gigyf1 deficiency in mice led to a reduction in the number of upper-layer cortical neurons, accompanied by a decrease in proliferation and increase in differentiation of neural progenitor cells. We showed that GIGYF1 regulated the recycling of IGF-1R to the cell surface. KO of GIGYF1 led to a decreased level of IGF-1R on the cell surface, disrupting the IGF-1R/ERK signaling pathway. In summary, our findings show that GIGYF1 is a regulator of IGF-1R recycling. Haploinsufficiency of GIGYF1 was associated with autistic behavior, likely through interference with IGF-1R/ERK signaling pathway.