학술논문

Solvent-Assisted Adsorption of Cellulose on a Carbon Catalyst as a Pretreatment Method for Hydrolysis to Glucose
Document Type
article
Source
Chemistry, Vol 5, Iss 1, Pp 381-392 (2023)
Subject
cellulose
hydrolysis
glucose
carbon catalyst
phosphoric acid
Chemistry
QD1-999
Language
English
ISSN
2624-8549
Abstract
Cellulose hydrolysis to glucose using a heterogeneous catalyst is a necessary step in producing bio-based chemicals and polymers. The requirement for energy-intensive pretreatments, such as ball milling, to increase the reactivity of cellulose is one of the major issues in this area. Here, we show that by using solvent-assisted adsorption as a pretreatment step, cellulose can be adsorbed on the surface of a carbon catalyst. For adsorption pretreatment, phosphoric acid (H3PO4) performed better than other solvents such as sulfuric acid (H2SO4), tetrabutylammonium fluoride/dimethyl sulfoxide (TBAF/DMSO) and 1-butyl-3-methylimidazolium chloride ([BMMI]Cl). Hydrolysis after the adsorption of cellulose and the removal of H3PO4 produced a 73% yield of glucose. Partial hydrolysis of cellulose in H3PO4 before adsorption increased the final glucose yield. The glucose yield was proportional to the number of weakly acidic functional groups on the carbon catalyst, indicating the reaction was heterogeneously catalyzed. In a preliminary lab-scale life-cycle analysis (LCA), greenhouse gas (GHG) emissions per kg of glucose produced through the hydrolysis of cellulose were calculated. The H3PO4-assisted adsorption notably reduces GHG emissions compared to the previously reported ball milling pretreatment.