학술논문

Inflammatory dendritic cells restrain CD11b+CD4+ CTLs via CD200R in human NSCLC
Document Type
article
Source
Cell Reports, Vol 43, Iss 2, Pp 113767- (2024)
Subject
CP: Cancer
CP: Immunology
Biology (General)
QH301-705.5
Language
English
ISSN
2211-1247
Abstract
Summary: CD4+ cytotoxic T lymphocytes (CD4+ CTLs) are suggested to play a crucial role in inflammatory diseases, including cancer, but their characteristics in human non-small cell lung cancer (NSCLC) remain unknown. Here, using the cell surface marker CD11b, we identify CD11b+CD4+ CTLs as a cytotoxic subset of CD4+ T cells in multiple tissues of NSCLC patients. In addition, tumor-infiltrating CD11b+CD4+ CTLs show a dysfunctional phenotype with elevated expression of CD200 receptor (CD200R), a negatively immunomodulatory receptor. CD4+ regulatory T (Treg) cells restrain the anti-tumor role of CD11b+CD4+ CTLs via CD200. Mechanistically, inflammatory dendritic cells promote the CD200R expression of CD11b+CD4+ CTLs by secreting interleukin-1β (IL-1β). Finally, we demonstrate that CD200 blockade can revive the tumor-killing role of CD11b+CD4+ CTLs and prolong the survival of tumor-bearing mice. Taken together, our study identifies CD11b+CD4+ CTLs in NSCLC with decreased cytotoxicity that can be reinvigorated by CD200 blockade, suggesting that targeting CD200 is a promising immunotherapy strategy in NSCLC.