학술논문

Adsorption Saturation and Chromatographic Distortion Effects on Passive Headspace Sampling with Activated Charcoal in Fire Debris Analysis
Document Type
journal paper
Source
Journal of Forensic and Sciences, Mar 2005, Vol. 50, No. 2, pp. JFS2004274-10.
Subject
forensic science
fire debris
activated charcoal
passive headspace
Language
English
ISSN
0022-1198
Abstract
Distortion of the chromatographic profile obtained for hydrocarbons that have been sampled by adsorption onto activated charcoal is a well-known phenomenon. The work reported here helps to better define the causes of chromatographic profile distortion and offers a potential method to avoid chromatographic distortion in some cases through a subsampling technique. The recovery of hydrocarbons from an equimolar mixture was investigated to determine the influence of hydrocarbon concentration on the molar ratios of recovered components. In a one-quart container, hydrocarbon volumes as small as 24 μL (liquid) were sufficient to saturate the surface area available for adsorption on a 99.0 mm2 square of activated charcoal, resulting in significant distortions in the molar ratio and the chromatographic profile of the recovered hydrocarbons. Passive headspace sampling of a similarly small volume of unweathered gasoline spiked onto carpet padding resulted in a significant distortion of the chromatographic profile. The chromatographic profile of the recovered hydrocarbons closely resembled 75% weathered gasoline. Heating the container spiked with unweathered gasoline to evenly distribute the components and then removing a subsample of the carpet padding to a second container for passive headspace analysis greatly reduced the amount of distortion in the resulting chromatogram.