학술논문

Searching for neutrinoless double-beta decay of $^{130}$Te with CUORE
Document Type
Working Paper
Author
CUORE CollaborationArtusa, D. R.Avignone III, F. T.Azzolini, O.Balata, M.Banks, T. I.Bari, G.Beeman, J.Bellini, F.Bersani, A.Biassoni, M.Brofferio, C.Bucci, C.Cai, X. Z.Camacho, A.Canonica, L.Cao, X. G.Capelli, S.Carbone, L.Cardani, L.Carrettoni, M.Casali, N.Chiesa, D.Chott, N.Clemenza, M.Copello, S.Cosmelli, C.Cremonesi, O.Creswick, R. J.Dafinei, I.Dally, A.Datskov, V.De Biasi, A.Deninno, M. M.Di Domizio, S.di Vacri, M. L.Ejzak, L.Fang, D. Q.Farach, H. A.Faverzani, M.Fernandes, G.Ferri, E.Ferroni, F.Fiorini, E.Franceschi, M. A.Freedman, S. J.Fujikawa, B. K.Giachero, A.Gironi, L.Giuliani, A.Goett, J.Gorla, P.Gotti, C.Gutierrez, T. D.Haller, E. E.Han, K.Heeger, K. M.Hennings-Yeomans, R.Huang, H. Z.Kadel, R.Kazkaz, K.Keppel, G.Kolomensky, Yu. G.Li, Y. L.Ligi, C.Liu, X.Ma, Y. G.Maiano, C.Maino, M.Martinez, M.Maruyama, R. H.Mei, Y.Moggi, N.Morganti, S.Napolitano, T.Nisi, S.Nones, C.Norman, E. B.Nucciotti, A.O'Donnell, T.Orio, F.Orlandi, D.Ouellet, J. L.Pallavicini, M.Palmieri, V.Pattavina, L.Pavan, M.Pedretti, M.Pessina, G.Pettinacci, V.Piperno, G.Pira, C.Pirro, S.Previtali, E.Rampazzo, V.Rosenfeld, C.Rusconi, C.Sala, E.Sangiorgio, S.Scielzo, N. D.Sisti, M.Smith, A. R.Taffarello, L.Tenconi, M.Terranova, F.Tian, W. D.Tomei, C.Trentalange, S.Ventura, G.Vignati, M.Wang, B. S.Wang, H. W.Wielgus, L.Wilson, J.Winslow, L. A.Wise, T.Woodcraft, A.Zanotti, L.Zarra, C.Zhu, B. X.Zucchelli, S.
Source
Subject
Physics - Instrumentation and Detectors
Nuclear Experiment
Language
Abstract
Neutrinoless double-beta ($0\nu\beta\beta$) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for $0\nu\beta\beta$ decay of $^{130}$Te using an array of 988 TeO$_2$ crystal bolometers operated at 10 mK. The detector will contain 206 kg of $^{130}$Te and have an average energy resolution of 5 keV; the projected $0\nu\beta\beta$ decay half-life sensitivity after five years of live time is $1.6\times 10^{26}$ y at $1\sigma$ ($9.5\times10^{25}$ y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). In this paper we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.
Comment: 20 pages, 8 figures. Published in Advances in High Energy Physics, Volume 2015 (2015), Article ID 879871