학술논문

On the generation of ultra-bright and low energy spread electron beams in laser wakefield acceleration in a uniform plasma
Document Type
Working Paper
Source
Subject
Physics - Accelerator Physics
Physics - Plasma Physics
Language
Abstract
The quality of electron beams produced from plasma-based accelerators, i.e., normalized brightness and energy spread, has made transformative progress in the past several decades in both simulation and experiment. Recently, full-scale particle-in-cell (PIC) simulations have shown that electron beams with unprecedented brightness ($10^{20}\sim10^{21}~\mathrm{A}/\mathrm{m}^2/\mathrm{rad}^2$) and $0.1\sim 1$ MeV energy spread can be produced through controlled injection in a slowly expanding bubble that arises when a particle beam or laser pulse propagates in density gradient, or when a particle beam self-focuses in uniform plasma or has a superluminal flying focus. However, in previous simulations of work on self-injection triggered by an evolving laser driver in a uniform plasma, the resulting beams did not exhibit comparable brightnesses and energy spreads. Here, we demonstrate through the use of large-scale high-fidelity PIC simulations that a slowly expanding bubble driven by a laser pulse in a uniform plasma can indeed produce self-injected electron beams with similar brightnesses and energy spreads as for an evolving bubble driven by an electron beam driver. We consider laser spot sizes roughly equal to the matched spot sizes in a uniform plasma and find that the evolution of the bubble occurs naturally through the evolution of the laser. The effects of the electron beam quality on the choice of physical as well as numerical parameters, e.g. grid sizes and field solvers used in the PIC simulations are presented. It is found that this original and simplest injection scheme can produce electron beams with beam quality exceeding that of the more recent concepts.