학술논문

AGNfitter-rx: Modelling the radio-to-X-ray SEDs of AGNs
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
We present new frontiers in the modelling of the spectral energy distributions (SED) of active galaxies by introducing the radio-to-X-ray fitting capabilities of the publicly available Bayesian code AGNfitter. The new code release, called AGNfitter-rx, models the broad-band photometry covering the radio, infrared (IR), optical, ultraviolet (UV) and X-ray bands consistently, using a combination of theoretical and semi-empirical models of the AGN and host galaxy emission. This framework enables the detailed characterization of four physical components of the active nuclei: the accretion disk, the hot dusty torus, the relativistic jets/core radio emission, and the hot corona; alongside modeling three components within the host galaxy: stellar populations, cold dust, and the radio emission from the star-forming regions. Applying AGNfitter-rx to a diverse sample of 36 AGN SEDs at z<0.7 from the AGN SED ATLAS, we investigate and compare the performance of state-of-the-art torus and accretion disk emission models on fit quality and inferred physical parameters. We find that clumpy torus models that include polar winds and semi-empirical accretion disk templates including emission line features significantly increase the fit quality in 67% of the sources, by effectively reducing by $2\sigma$ fit residuals in the $1.5-5 \mu \rm m$ and $0.7 \mu \rm m$ regimes.We demonstrate that, by applying AGNfitter-rx on photometric data, we are able to estimate inclination and opening angles of the torus, consistent with spectroscopic classifications within the AGN unified model, as well as black hole mass estimates in agreement with virial estimates based on H$\alpha$. The wavelength coverage and the flexibility for the inclusion of state-of-the-art theoretical models make AGNfitter-rx a unique tool for the further development of SED modelling for AGNs in present and future radio-to-X-ray galaxy surveys.
Comment: 20 pages, 10 figures, Accepted for publication by A&A