학술논문

The Magnetic Origin of Solar Campfires
Document Type
Working Paper
Source
Subject
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
Solar campfires are fine-scale heating events, recently observed by Extreme Ultraviolet Imager (EUI), onboard Solar Orbiter. Here we use EUI 174\AA\ images, together with EUV images from SDO/AIA, and line-of-sight magnetograms from SDO/HMI to investigate the magnetic origin of 52 randomly selected campfires in the quiet solar corona. We find that (i) the campfires are rooted at the edges of photospheric magnetic network lanes; (ii) most of the campfires reside above the neutral line between majority-polarity magnetic flux patch and a merging minority-polarity flux patch, with a flux cancelation rate of $\sim$10$^{18}$Mx hr$^{-1}$; (iii) some of the campfires occur repeatedly from the same neutral line; (iv) in the large majority of instances, campfires are preceded by a cool-plasma structure, analogous to minifilaments in coronal jets; and (v) although many campfires have `complex' structure, most campfires resemble small-scale jets, dots, or loops. Thus, `campfire' is a general term that includes different types of small-scale solar dynamic features. They contain sufficient magnetic energy ($\sim$10$^{26}$-10$^{27}$ erg) to heat the solar atmosphere locally to 0.5--2.5MK. Their lifetimes range from about a minute to over an hour, with most of the campfires having a lifetime of $<$10 minutes. The average lengths and widths of the campfires are 5400$\pm$2500km and 1600$\pm$640km, respectively. Our observations suggest that (a) the presence of magnetic flux ropes may be ubiquitous in the solar atmosphere and not limited to coronal jets and larger-scale eruptions that make CMEs, and (b) magnetic flux cancelation is the fundamental process for the formation and triggering of most campfires.
Comment: Accepted for publication in ApJ Letters, 20 Pages, 1 Table, 12 Figures