학술논문

Catching Element Formation In The Act
Document Type
Working Paper
Author
Fryer, Chris L.Timmes, FrankHungerford, Aimee L.Couture, AaronAdams, FredAoki, WakoArcones, AlmudenaArnett, DavidAuchettl, KatieAvila, MelinaBadenes, CarlesBaron, EddieBauswein, AndreasBeacom, JohnBlackmon, JeffBlondin, StephaneBloser, PeterBoggs, SteveBoss, AlanBrandt, TerriBravo, EduardoBrown, EdBrown, PeterBudtz-Jorgensen, Steve Bruenn. CarlBurns, EricCalder, AlanCaputo, ReginaChampagne, ArtChevalier, RogerChieffi, AlessandroChipps, KellyCinabro, DavidClarkson, OndreaClayton, DonCoc, AlainConnolly, DevinConroy, CharlieCote, BenoitCouch, SeanDauphas, NicolasdeBoer, Richard JamesDeibel, CatherineDenisenkov, PavelDesch, SteveDessart, LucDiehl, RolandDoherty, CarolynDominguez, InmaDong, SuboDwarkadas, VikramFan, DoreenFields, BrianFields, CarlFilippenko, AlexFisher, RobertFoucart, FrancoisFransson, ClaesFrohlich, CarlaFuller, GeorgeGibson, BradGiryanskaya, ViktoriyaGorres, JoachimGoriely, StephaneGrebenev, SergeiGrefenstette, BrianGrohs, EvanGuillochon, JamesHarpole, AliceHarris, ChelseaHarris, J. AustinHarrison, FionaHartmann, DieterHashimoto, Masa-akiHeger, AlexanderHernanz, MargaritaHerwig, FalkHirschi, RaphaelHix, Raphael WilliamHoflich, PeterHoffman, RobertHolcomb, ColeHsiao, EricIliadis, ChristianJaniuk, AgnieszkaJanka, ThomasJerkstrand, AndersJohns, LucasJones, SamuelJose, JordiKajino, ToshitakaKarakas, AmandaKarpov, PlatonKasen, DanKierans, CarolynKippen, MarcKorobkin, OlegKobayashi, ChiakiKozma, CeciliaKrot, SahaKumar, PawanKuvvetli, IrfanLaird, AlisonLaming, MartinLarsson, JosefinLattanzio, JohnLattimer, JamesLeising, MarkLennarz, AnnikaLentz, EricLimongi, MarcoLippuner, JonasLivne, EliLloyd-Ronning, NicoleLongland, RichardLopez, Laura A.Lugaro, MariaLutovinov, AlexanderMadsen, KristinMalone, ChrisMatteucci, FrancescaMcEnery, JulieMeisel, ZachMesser, BronsonMetzger, BrianMeyer, BradleyMeynet, GeorgesMezzacappa, AnthonyMiller, JonahMiller, RichardMilne, PeterMisch, WendellMitchell, LeeMosta, PhilippMotizuki, YukoMuller, BernhardMumpower, MatthewMurphy, JeremiahNagataki, ShigehiroNakar, EhudNomoto, Ken'ichiNugent, PeterNunes, FilomenaO'Shea, BrianOberlack, UwePain, StevenParker, LucasPerego, AlbinoPignatari, MarcoPinedo, Gabriel MartinezPlewa, TomaszPoznanski, DoviPriedhorsky, WilliamPritychenko, BorisRadice, DavidRamirez-Ruiz, EnricoRauscher, ThomasReddy, SanjayRehm, ErnstReifarth, ReneRichman, DebraRicker, PaulRijal, NabinRoberts, LukeRopke, FriedrichRosswog, StephanRuiter, Ashley J.Ruiz, ChrisSavin, Daniel WolfSchatz, HendrikSchneider, DieterSchwab, JosiahSeitenzahl, IvoShen, KenSiegert, ThomasSim, StuartSmith, DavidSmith, KarlSmith, MichaelSollerman, JesperSprouse, TrevorSpyrou, ArtemisStarrfield, SumnerSteiner, AndrewStrong, Andrew W.Sukhbold, TuguldurSuntzeff, NickSurman, RebeccaTanimori, ToruThe, Lih-SinThielemann, Friedrich-KarlTolstov, AlexeyTominaga, NozomuTomsick, JohnTownsley, DeanTsintari, PelagiaTsygankov, SergeyVartanyan, DavidVenters, ToniaVestrand, TomVink, JaccoWaldman, RoniWang, LifangWang, XiluWarren, MacKenzieWest, ChristopherWheeler, J. CraigWiescher, MichaelWinkler, ChristophWinter, LisaWolf, BillWoolf, RichardWoosley, StanWu, JinWrede, ChrisYamada, ShoichiYoung, PatrickZegers, RemcoZingale, MichaelZwart, Simon Portegies
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.
Comment: 14 pages including 3 figures