학술논문

TOI-2015b: A Warm Neptune with Transit Timing Variations Orbiting an Active mid M Dwarf
Document Type
Working Paper
Source
Subject
Astrophysics - Earth and Planetary Astrophysics
Language
Abstract
We report the discovery of a close-in ($P_{\mathrm{orb}} = 3.349\:\mathrm{days}$) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby ($d=47.3\:\mathrm{pc}$) active M4 star, TOI-2015. We characterize the planet's properties using TESS photometry, precise near-infrared radial velocities (RV) with the Habitable-zone Planet Finder (HP) Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius $R_p~=~3.37_{-0.20}^{+0.15} \:\mathrm{R_\oplus}$, mass $m_p~=~16.4_{-4.1}^{+4.1}\:\mathrm{M_\oplus}$, and density $\rho_p~=~2.32_{-0.37}^{+0.38} \:\mathrm{g cm^{-3}}$ for TOI-2015b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period of $P_{\mathrm{rot}}~=~8.7 \pm~0.9~\mathrm{days}$ and associated rotation-based age estimate of $1.1~\pm~0.1\:\mathrm{Gyr}$. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super period $P_{\mathrm{sup}}~\approx~430\:\mathrm{days}$ and amplitude $\sim$$100\:\mathrm{minutes}$. After considering multiple likely period ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions -- including 3:2 and 4:3 resonance -- cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of $m_b~=~13.3_{-4.5}^{+4.7}\:\mathrm{M_\oplus}$ for TOI-2015b and $m_c~=~6.8_{-2.3}^{+3.5}\:\mathrm{M_\oplus}$ for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.
Comment: 29 pages, 15 figures, 6 tables. Accepted for publication in The Astronomical Journal