학술논문

Probing interacting dark sector models with future weak lensing-informed galaxy cluster abundance constraints from SPT-3G and CMB-S4
Document Type
Working Paper
Source
Subject
Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Phenomenology
Language
Abstract
We forecast the sensitivity of ongoing and future galaxy cluster abundance measurements to detect deviations from the cold dark matter (CDM) paradigm. Concretely, we consider a class of dark sector models that feature an interaction between dark matter and a dark radiation species (IDM-DR). This setup can be naturally realized by a non-Abelian gauge symmetry and has the potential to explain $S_8$ tensions arising within $\Lambda$CDM. We create mock catalogs of the ongoing SPT-3G as well as the future CMB-S4 surveys of galaxy clusters selected via the thermal Sunyaev-Zeldovich effect (tSZE). Both datasets are complemented with cluster mass calibration from next-generation weak gravitational lensing data (ngWL) like those expected from the Euclid mission and the Vera C. Rubin Observatory. We consider an IDM-DR scenario with parameters chosen to be in agreement with Planck 2018 data and that also leads to a low value of $S_8$ as indicated by some local structure formation analyses. Accounting for systematic and stochastic uncertainties in the mass determination and the cluster tSZE selection, we find that both SPT-3G$\times$ngWL and CMB-S4$\times$ngWL cluster data will be able to discriminate this IDM-DR model from $\Lambda$CDM, and thus test whether dark matter - dark radiation interactions are responsible for lowering $S_8$. Assuming IDM-DR, we forecast that the temperature of the dark radiation can be determined to about 40% (10%) with SPT-3G$\times$ngWL (CMB-S4$\times$ngWL), considering 68% credibility, while $S_8$ can be recovered with percent-level accuracy. Furthermore, we show that IDM-DR can be discriminated from massive neutrinos, and that cluster counts will be able to constrain the dark radiation temperature to be below $\sim 10%$ (at 95% credibility) of the cosmic microwave background temperature if the true cosmological model is $\Lambda$CDM.