학술논문

The NANOGrav 11-year Data Set: Constraints on Planetary Masses Around 45 Millisecond Pulsars
Document Type
Working Paper
Source
Subject
Astrophysics - Earth and Planetary Astrophysics
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
We search for extrasolar planets around millisecond pulsars using pulsar timing data and seek to determine the minimum detectable planetary masses as a function of orbital period. Using the 11-year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), we look for variations from our models of pulse arrival times due to the presence of exoplanets. No planets are detected around the millisecond pulsars in the NANOGrav 11-year data set, but taking into consideration the noise levels of each pulsar and the sampling rate of our observations, we develop limits that show we are sensitive to planetary masses as low as that of the moon. We analyzed potential planet periods, P, in the range 7 days < P < 2000 days, with somewhat smaller ranges for some binary pulsars. The planetary mass limit for our median-sensitivity pulsar within this period range is 1 M_moon (P / 100 days)^(-2/3).
Comment: Revised and accepted by ApJ Letters