학술논문

Automated quantum conductance calculations using maximally-localised Wannier functions
Document Type
Working Paper
Source
Comput. Phys. Commun. 182, 2174 (2011)
Subject
Physics - Computational Physics
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Materials Science
Language
Abstract
A robust, user-friendly, and automated method to determine quantum conductance in disordered quasi-one-dimensional systems is presented. The scheme relies upon an initial density- functional theory calculation in a specific geometry after which the ground-state eigenfunctions are transformed to a maximally-localised Wannier function (MLWF) basis. In this basis, our novel algorithms manipulate and partition the Hamiltonian for the calculation of coherent electronic transport properties within the Landauer-Buttiker formalism. Furthermore, we describe how short- ranged Hamiltonians in the MLWF basis can be combined to build model Hamiltonians of large (>10,000 atom) disordered systems without loss of accuracy. These automated algorithms have been implemented in the Wannier90 code[Mostofi et al, Comput. Phys. Commun. 178, 685 (2008)], which is interfaced to a number of electronic structure codes such as Quantum-ESPRESSO, AbInit, Wien2k, SIESTA and FLEUR. We apply our methods to an Al atomic chain with a Na defect, an axially heterostructured Si/Ge nanowire and to a spin-polarised defect on a zigzag graphene nanoribbon.
Comment: 23 pages, 15 figures