학술논문

SPIRou reveals unusually strong magnetic fields of slowly rotating M dwarfs
Document Type
Working Paper
Source
Subject
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
In this paper, we study six slowly rotating mid-to-late M~dwarfs (rotation period $P_{\mathrm{rot}} \approx 40-190\,\mathrm{dy}$) by analysing spectropolarimetric data collected with SPIRou at the Canada-France-Hawaii Telescope as part of the SPIRou Legacy Survey from 2019 to 2022. From $\approx$100--200 Least-Squares-Deconvolved (LSD) profiles of circularly polarised spectra of each star, we confirm the stellar rotation periods of the six M~dwarfs and explore their large-scale magnetic field topology and its evolution with time using both the method based on Principal Component Analysis (PCA) proposed recently and Zeeman-Doppler Imaging. All M~dwarfs show large-scale field variations on the time-scale of their rotation periods, directly seen from the circularly polarised LSD profiles using the PCA method. We detect a magnetic polarity reversal for the fully-convective M~dwarf GJ~1151, and a possible inversion in progress for Gl~905. The four fully-convective M~dwarfs of our small sample (Gl~905, GJ~1289, GJ~1151, GJ~1286) show a larger amount of temporal variations (mainly in field strength and axisymmetry) than the two partly-convective ones (Gl~617B, Gl~408). Surprisingly, the six M~dwarfs show large-scale field strengths in the range between 20 to 200\,G similar to those of M~dwarfs rotating significantly faster. Our findings imply that the large-scale fields of very slowly rotating M~dwarfs are likely generated through dynamo processes operating in a different regime than those of the faster rotators that have been magnetically characterized so far.
Comment: 16 pages, 35 figures, accepted for publication in MNRAS