학술논문

From linear stability analysis to three-dimensional organisation in an incompressible open cavity flow
Document Type
Working Paper
Source
Subject
Physics - Fluid Dynamics
Language
Abstract
Three-dimensional direct numerical simulations of an incompressible open square cavity flow are conducted. Features of the permanent (non-linear) regime together with the linear stability analysis of a two-dimensional steady base flow are discussed. Spanwise boundary conditions are periodic and control parameters set such that the shear layer is stable against Kelvin-Helmholtz modes. Three branches of destabilising modes are found. The most destabilising branch is associated with steady modes, over a finite range of spanwise wavenumbers. The two other branches provide unsteady modes. Features of each branches are recovered in the permanent regime: wavelength of the most powerful spanwise Fourier mode, swaying phenomenon, angular frequencies, indicating that modes of each branches are selected and interact in the permanent flow.
Comment: 9 pages