학술논문

The impact of lake shape and size on lake breezes and air-lake exchanges on Titan
Document Type
Working Paper
Source
Icarus 411 (2024) 115925
Subject
Astrophysics - Earth and Planetary Astrophysics
Physics - Atmospheric and Oceanic Physics
Language
Abstract
Titan, the largest moon of Saturn, has many lakes on its surface, formed mainly of liquid methane. Like water lakes on Earth, these methane lakes on Titan likely profoundly affect the local climate. Previous studies (Rafkin and Soto 2020, Chatain et al 2022) showed that Titan's lakes create lake breeze circulations with characteristic dimensions similar to the ones observed on Earth. However, such studies used a model in two dimensions; this work investigates the consequences of the addition of a third dimension to the model. Our results show that 2D simulations tend to overestimate the extension of the lake breeze over the land, and underestimate the strength of the subsidence over the lake, due to divergence/convergence geometrical effects in the mass conservation equations. In addition, 3D simulations including a large scale background wind show the formation of a pocket of accelerated wind behind the lake, which did not form in 2D simulations. An investigation of the effect of shoreline concavity on the resulting air circulation shows the formation of wind currents over peninsulas. Simulations with several lakes can either result in the formation of several individual lake breeze cells (during the day), or the emergence of a large merged cell with internal wind currents between lakes (during the night). Simulations of several real-shaped lakes located at a latitude of 74{\deg}N on Titan at the autumn equinox show that larger lakes trigger stronger winds, and that some sections of lakes might accumulate enough methane vapor to form a thin fog. The addition of a third dimension, along with adjustments in the parametrizations of turbulence and subsurface land temperature, results in a reduction in the magnitude of the average lake evaporate rate, namely to ~6 cm/Earth year.
Comment: Published online in Icarus on 2023-12-17. Dataset available at the DOI: 10.5281/zenodo.8172271