학술논문

A statistical study of long-term evolution of coronal hole properties as observed by SDO
Document Type
Working Paper
Source
A&A 638, A68 (2020)
Subject
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
The study of the evolution of coronal holes (CHs) is especially important in the context of high-speed solar wind streams (HSS) emanating from them. Stream interaction regions may deliver large amount of energy into the Earths system, cause geomagnetic storms, and shape interplanetary space. By statistically analysing 16 long-living CHs observed by the SDO, we focus on coronal, morphological and underlying photospheric magnetic field characteristics as well as investigate the evolution of the associated HSSs. We use CATCH to extract and analyse CHs using observations taken by AIA and HMI. We derive changes in the CH properties and correlate them to the CH evolution. Further we analyse the properties of the HSS signatures near 1au from OMNI data by manually extracting the peak bulk velocity of the solar wind plasma. We find that the area evolution of CHs mostly shows a rough trend of growing to a maximum followed by a decay. No correlation of the area evolution to the evolution of the signed magnetic flux and signed magnetic flux density enclosed in the projected CH area was found. From this we conclude that the magnetic flux within the extracted CH boundaries is not the main cause for its area evolution. We derive CH area change rates (growth and decay) of 14.2 +/- 15.0 * 10^8 km^2/day showing a reasonable anti-correlation (cc =-0.48) to the solar activity, approximated by the sunspot number. The change rates of the signed mean magnetic flux density (27.3 +/- 32.2 mG/day) and the signed magnetic flux (30.3 +/- 31.5 * 10^18 Mx/day) were also found to be dependent on solar activity (cc =0.50 and cc =0.69 respectively) rather than on the individual CH evolutions. Further we find that the CH area-to-HSS peak velocity relation is valid for each CH over its evolution but revealing significant variations in the slopes of the regression lines.
Comment: Accepted at A&A