학술논문

An $\alpha$-robust and second-order accurate scheme for a subdiffusion equation
Document Type
Working Paper
Source
Subject
Mathematics - Numerical Analysis
Language
Abstract
We investigate a second-order accurate time-stepping scheme for solving a time-fractional diffusion equation with a Caputo derivative of order~$\alpha \in (0,1)$. The basic idea of our scheme is based on local integration followed by linear interpolation. It reduces to the standard Crank--Nicolson scheme in the classical diffusion case, that is, as $\alpha\to 1$. Using a novel approach, we show that the proposed scheme is $\alpha$-robust and second-order accurate in the $L^2(L^2)$-norm, assuming a suitable time-graded mesh. For completeness, we use the Galerkin finite element method for the spatial discretization and discuss the error analysis under reasonable regularity assumptions on the given data. Some numerical results are presented at the end.