학술논문

Measurements of the Secondary Electron Emission from Rare Gases at 4.2K
Document Type
Working Paper
Source
Subject
Physics - Accelerator Physics
Language
Abstract
Dependence of the secondary electron yield (SEY) from the primary beam incident energy and the coverage has been measured for neon, argon, krypton and xenon condensed on a target at 4.2K. The beam energy ranged between 100 eV and 3 keV, the maximal applied coverage have made up 12000, 4700, 2500 and 1400 monolayers correspondingly for neon, argon, krypton and xenon. The SEY results for these coverages can be considered as belonging only to investigated gases without influence of the target material. The SEY dependencies versus the primary beam energy for all gases comprise only an ascending part and therefore, the maximal measured SEY values have been obtained for the beam energy of 3keV and have made up 62, 73, 60.5 and 52 for neon, argon, krypton and xenon correspondingly. Values of the first cross-over have made up 21 eV for neon, 14 eV for argon, 12.5 eV for krypton and 10.5 eV for xenon. An internal field appearing across a film due to the beam impact can considerably affect the SEY measurements that demanded the beam current to be reduced till 9.0E-10A. Duration of the beam impact varied between 500 \mu sec and 250 \mu sec. It was found that reliable SEY measurements can also be taken on a charged surface if the charge was acquired due to beam impact with electrons of higher energy. All SEY measurements for once applied coverage have been carried out for whole range of incident energies from 3 keV down to 100 eV without renewing the film. Developing of pores inside of a deposited film can significantly increase the SEY as it was observed during warming up the target.
Comment: 10 Pages - 25 figures