학술논문

Discrete Time Crystal Phase as a Resource for Quantum Enhanced Sensing
Document Type
Working Paper
Source
Subject
Quantum Physics
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
Discrete time crystals are a special phase of matter in which time translational symmetry is broken through a periodic driving pulse. Here, we first propose and characterize an effective mechanism to generate a stable discrete time crystal phase in a disorder-free many-body system with indefinite persistent oscillations even in finite-size systems. Then we explore the sensing capability of this system to measure the spin exchange coupling. The results show strong quantum-enhanced sensitivity throughout the time crystal phase. As the spin exchange coupling varies, the system goes through a sharp phase transition and enters a non-time crystal phase in which the performance of the probe considerably decreases. We characterize this phase transition as a second-order type and determine its critical properties through a comprehensive finite-size scaling analysis. The performance of our probe is independent of the initial states and may even benefit from imperfections in the driving pulse.
Comment: Comments are welcome!