학술논문

Quantum Entanglement in Top Quark Pair Production
Document Type
Working Paper
Source
Subject
High Energy Physics - Phenomenology
Quantum Physics
Language
Abstract
Top quarks, the most massive particles in the standard model, attract considerable attention since they decay before hadronizing. This presents physicists with a unique opportunity to directly investigate their properties. In this letter, we expand upon the work of G. Iskander, J. Pan, M. Tyler, C. Weber and O. K. Baker to demonstrate that even with the most massive fundamental particle, we see the same manifestation of entanglement observed in both electroweak and electromagnetic interactions. We propose that the thermal component resulting from protons colliding into two top quarks emerges from entanglement within the two-proton wave function. The presence of entanglement implies the coexistence of both thermal and hard scattering components in the transverse momentum distribution. We use published ATLAS and CMS results to show that the data exhibits the expected behavior.
Comment: 10 pages, 5 figures