학술논문

Laurel forests in Tenerife, Canary Islands
Document Type
Article
Source
Trees - Structure and Function; 20021101, Vol. 16 Issue: 8 p538-546, 9p
Subject
Language
ISSN
09311890; 14322285
Abstract
Abstract. The efficiency of the conductive system in about 40-year-old Laurus azorica trees growing in a laurel forest was evaluated by comparing main stems and leaves (petioles) on the basis of theoretical sap flow values (1) calculated from vessel anatomy (taking vessels as ideal capillaries), (2) derived from measured dye velocity and (3) data taken from direct sap flow measurements. It was found that actual sap flow rate per wood area increases in stems from the pith towards the cambium. The outermost part of the stem is the most important part of the tree for conducting water. Maximum actually measured transpiration (sap flow rate) for the stand was practically identical to the theoretical rate calculated based on petiole anatomy, but it was about 45 times lower than that calculated based on stem anatomy. This illustrates the safety features of stem wood, which due to its high vessel density, is capable of transporting all the water required even when only a small area of its vessels is working. In the petioles, xylem is more efficiently used, but almost all vessels must work in order to supply water to leaves and any disturbance may cause leaf loss.