학술논문

Overexpression of KAT8 induces a failure in early embryonic development in mice.
Document Type
Academic Journal
Author
Wu X; State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.; Wang S; State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.; Guo Y; State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.; Zeng S; State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China. Electronic address: zengsm@cau.edu.cn.
Source
Publisher: Elsevier Country of Publication: United States NLM ID: 0421510 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-3231 (Electronic) Linking ISSN: 0093691X NLM ISO Abbreviation: Theriogenology Subsets: MEDLINE
Subject
Language
English
Abstract
Embryo quality is strongly associated with subsequent embryonic developmental efficiency. However, the detailed function of lysine acetyltransferase 8 (KAT8) during early embryonic development in mice remains elusive. In this study, we reported that KAT8 played a pivotal role in the first cleavage of mouse embryos. Immunostaining results revealed that KAT8 predominantly accumulated in the nucleus throughout the entire embryonic developmental process. Kat8 overexpression (Kat8-OE) was correlated with early developmental potential of embryos to the blastocyst stage. We also found that Kat8-OE embryos showed spindle-assembly defects and chromosomal misalignment, and that Kat8-OE in embryos led to increased levels of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX by affecting the expression of critical genes related to mitochondrial respiratory chain and antioxidation pathways. Subsequently, cellular apoptosis was activated as confirmed by TUNEL (Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling) assay. Furthermore, we revealed that KAT8 was related to regulating the acetylation status of H4K16 in mouse embryos, and Kat8-OE induced the hyperacetylation of H4K16, which might be a key factor for the defective spindle/chromosome apparatus. Collectively, our data suggest that KAT8 constitutes an important regulator of spindle assembly and redox homeostasis during early embryonic development in mice.
Competing Interests: Declaration of competing interest None.
(Copyright © 2024 Elsevier Inc. All rights reserved.)