학술논문

Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme.
Document Type
Article
Source
Journal of Virology. Jul2015, Vol. 89 Issue 14, p7202-7213. 12p.
Subject
*CORONAVIRUSES
*CORONAVIRUS disease treatment
*SIALIC acids
*HEMAGGLUTININ
*ESTERASES
*NEURAMINIDASE
*RHABDOMYOSARCOMA
*EPITHELIAL cells
Language
ISSN
0022-538X
Abstract
Human coronavirus (hCoV)HKU1is one of six hCoVs identified to date and the only one with an unidentified cellular receptor. hCoV-HKU1 encodes a hemagglutinin-esterase (HE) protein that is unique to the group a betacoronaviruses (group 2a). The function of HKU1-HE remains largely undetermined. In this study, we examined binding of the S1 domain of hCoV-HKU1 spike to a panel of cells and found that the S1 could specifically bind on the cell surface of a human rhabdomyosarcoma cell line, RD. Pretreatment ofRD cells with neuraminidase (NA) and trypsin greatly reduced the binding, suggesting that the binding was mediated by sialic acids on glycoproteins. However, unlike other group 2a CoVs, e.g., hCoV-OC43, for which 9-O-acetylated sialic acid (9-O-Ac-Sia) serves as a receptor determinant, HKU1-S1 bound with neither 9-O-Ac-Sia-containing glycoprotein(s) nor rat and mouse erythrocytes. Nonetheless, the HKU1-HE was similar to OC43-HE, also possessed sialate-O-acetylesterase activity, and acted as a receptor-destroying enzyme (RDE) capable of eliminating the binding of HKU1-S1 toRDcells, whereas theO-acetylesterase-inactive HKU1-HE mutant lost this capacity. Using primary human ciliated airway epithelial (HAE) cell cultures, the only in vitro replication model for hCoV-HKU1 infection, we confirmed that pretreatment ofHAEcells withHEbut not the enzymatically inactive mutant blocked hCoV-HKU1 infection. These results demonstrate that hCoV-HKU1 exploitsO-Ac-Sia as a cellular attachment receptor determinant to initiate the infection of host cells and that itsHEprotein possesses the corresponding sialate-O-acetylesterase RDE activity. [ABSTRACT FROM AUTHOR]